• Title/Summary/Keyword: Cone jet

Search Result 69, Processing Time 0.02 seconds

A Study of Micro Stencil Printing based on Solution Atomization Process (용액 미립화공정 기반의 마이크로 스텐실 프린팅에 관한 연구)

  • Dang, Hyun Woo;Kim, Hyung Chan;Ko, Jeong Beom;Yang, Young Jin;Yang, Bong Su;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, experiments were conducted for micro pattern printing to combine solution atomization process and stencil printing based on electrospray deposition. The stencil mask fabricated by etching the photosensitive glass placed below 0.3 mm distance to substrate has 100 um line width. The process parameters of electrospray deposition system for the atomization of the solution are applied voltage and supply flow rate of the solution. Meniscus angle of cone-jet was optimized by varying the supply flow rate from 0.3 ml/hr to 0.7 ml/hr. Voltage condition was verified having symmetric cone-jet angle and no pulsation at 8.5 kV applied voltage. In addition, a number of micro patterns are printed using a single 1 step process by solution atomization process. Variable line width of approximate 100 um was confirmed by changing conditions of solution atomization regardless of the pattern size of stencil mask.

A micro-computed tomographic evaluation of root canal filling with a single gutta-percha cone and calcium silicate sealer

  • Kim, Jong Cheon;Moe, Maung Maung Kyaw;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the void of root canal filling over time when a calcium silicate sealer was used in the single gutta-percha cone technique. Materials and Methods: Twenty-four J-shaped simulated root canals and twenty-four palatal root canals from extracted human maxillary molars were instrumented with ProFile Ni-Ti rotary instruments up to size 35/0.06 or size 40/0.06, respectively. Half of the canals were filled with Endoseal MTA and the other half were with AH Plus Jet using the single gutta-percha cone technique. Immediately after and 4 weeks after the root canal filling, the samples were scanned using micro-computed tomography at a resolution of 12.8 ㎛. The scanned images were reconstructed using the NRecon software and the void percentages were calculated using the CTan software, and statistically analyzed by 1-way analysis of variance, paired t-test and Tukey post hoc test. Results: After 4 weeks, there were no significant changes in the void percentages at all levels in both material groups (p > 0.05), except at the apical level of the AH Plus Jet group (p < 0.05) in the simulated root canal showing more void percentage compared to other groups. Immediately after filling the extracted human root canals, the Endoseal MTA group showed significantly less void percentage compared to the AH Plus Jet group (p < 0.05). Conclusions: Under the limitations of this study, the Endoseal MTA does not seem to reduce the voids over time.

FLUENT MODELLING OF CAVITATION IN POPPET VALVES (포펫트밸브내에서의 캐비테이션에 관한 FLUENT 모델링)

  • Chung-Do, Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.113-123
    • /
    • 1999
  • The aim of this paper was to expand on work already carried out on the modelling of the flow through a poppet valve using CFD software FLUENT V4.22. Several different models were run on FLUENT for various lifts of the poppet cone and various back pressures. The results for pressure and velocity obtained were interpreted. The results revealed the presence of cavitation downstream of the orifice around the cone tip, and the presence of a high velocity jet stream along the centre line. These results confirm what has been found to happen in practice.

  • PDF

Performance Comparison of Collecting Efficiencies to Various Types of Piston Oil Cooling Gallery (피스톤 오일 냉각 유로 형태에 따른 수집효율 성능 비교)

  • Lee, Jeong-Keun;Chun, Sang-Myung;Joo, Dae-Heon;Ryu, Kwan-Ho
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In this research, it is investigated the collecting efficiency of jet oil to several types of piston oil cooling gallery by using recently developed PCJ (piston cooling jet) rig tester. So it will be selected for a better design of piston oil cooling gallery. The collecting efficiencies at each type of piston cooling galleries are measured under conditions of a few piston positions, and several oil jet pressures and oil viscosities. Furthermore, the type of jet cone will be compared for a few jet pressure conditions. The selected type of piston oil cooling gallery is planned to be applied to the target engine which is now developing to satisfy the EURO VI emission regulation.

Analytical Application of Glow Discharge Atomic Absorption Spectroscopy (GD-AAS) Using Three Types of Jet Configurations Under Power Mode

  • Hwang, Jun Ho;Lee, Ki Beom;Kim, Min Su;Lee, Seong Ro;Kim, Hasuck;Kim, Hyo Jin;Lee, Gae Ho
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.443-448
    • /
    • 1995
  • Three anode configurations of six-jet, cone-jet and cylindrical-jet are tested for their analytical performance under power mode operation. The effect of pressure, power and gas flow rate on atomic absorption signals have been studied. The increase of atomic absorption signal of sample element is observed at a fixed pressure in all configurations as the gas flow rate increase up to 300-600 seem, and as the power dissipated in the glow discharge cell increase. The lower the pressure is in the glow discharge cell at a fixed discharge power and argon flow rate, the greater the absorbance of sample element is. The optimum conditions are taken from these data and a calibration curve of Cu in low-alloy steel sample is obtained. In this calibration curve, six-jet configuration shows the best analytical results varies as the sample element.

  • PDF

Eruptive mechanisms and processes at Udo tuff cone, Udo Island, Korea (우도응회과의 분출기기구와 분출과정)

  • Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Eruptive mechanisms and processes at Udo tuff cone can be inferred from indicative characters of products, bedforms and lithofacies, and ring faults. In terms of bedforms and lithofa-cies in particular, massive lapilli tuff beds and chaotic lapilli tuff beds are derived from subaerial falls of aggregated tephra of wet tephra finger jets, occurring dominantly at the lower sequences of proximal part at the tuff cone. Crudely stratified lapilli tuff are derived from subaerial falls of slightly aggregated tephra of less wet tephra finger jets, whereas reversely graded lapilli tuff beds are from slightly disaggregated subaerial falls of continuous uprush. Both beds frequently occur in the middle sequences at proximal and near medial part of the tuff cone. Block and lapilli tephra lenses, ash-coated lapilli tephra beds(lenses) and thin-bedded tuff beds are derived from extremely disaggregated subaerial falls of dry tephra in the continuous uprush, frequently occurring at the upper sequences of medial part at the tuff cone. Udo tuff cone is a basaltic volcano emergent through the sea water surface while water could flood across or into the vent area. Emergence of the tuff cone was from the type-Surtseyan eruption characterized by earlier tephra finger jets and later continuous uprush columns of tephra with copious volumes of steam. Explosions began when boiling of wter produced a bubble column reducing the hydrostatic pres-sure, allowing exsolution of gases from the magma. This expansion of magma into a vesiculating froth fragmented the magma and permitted mixing of magma and water so that a more vigorous generation of steam could proceed. Tephra finger jetting explosions continued to build the crater rims, then remove water from the vent that their deposits flowed like slsurries until the continuous uprush explosion ensued. Continuous uprush explosions were associated with most rapid accumula-tion of tephra. The increasing volume rate led to partial removal of water from the vent area by the newly tephra ring so that more vigorous activity could be attended by a reducing water supply. This might restrain surplus of cold water entering the vent and thus enhance the vigour of the eruption by allowing optimal heat exchange. Eventually the crater became so deep and unsuported that piecemeal sliding, or massive subsidence on indipping ring faults, filled and closed the vent, and the cycle of explosions and collapse began anew.

  • PDF

Experimental Study of a Micro Turbo Jet Engine Performance and IR Signal with Nozzle Configuration (배기노즐 형상변화에 따른 마이크로 터보제트 엔진의 성능 및 적외선신호 실험연구)

  • Park, Gyusang;Kim, Sunmi;Choi, Seongman;Myoung, Rho-Shin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Micro turbojet engine test and infrared signal measurement were conducted to understand the characteristics of the engine performance and infrared signal with the variants of the exhaust nozzle configuration. A cone type nozzle and five rectangle type nozzles which has aspect ratio from one to five were used for the experimental work. The results show that there are not much difference between cone and rectangle nozzles of the thrust and specific fuel consumption. However infrared signal from exhaust gas become smaller as increasing aspect ratio.

The Study of the Decision Criteria for the Urgency Released Valve in Hydraulic Dam (수력댐 비상방류밸브의 선정조건에 관한 연구)

  • Roh, H.W.;Lee, G.S.;Park, Y.M.;Kim, B.S.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.613-616
    • /
    • 2005
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. And, the judgment data for choice were slight lowdown in water supply and drainage facilities standard or Japanese penstock technology standard, various standard of KOWACO etc. Therefore. there were investigated the valve inside phenomenon (cavitation, disk chattering, vibration) by velocity of flow and the stability examination of body by high velocity of flow through flow scale model test using the numerical analysis and PIV to establish the applicable extensibility of the butterfly valve for the urgency released valve.

  • PDF

Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets- (단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군-)

  • Eom, Gi-Chan;Lee, Jong-Su;Geum, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.