• Title/Summary/Keyword: Cone calorimeter

Search Result 210, Processing Time 0.021 seconds

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives (알킬렌디아미노알킬-비스-포스폰산 유도체로 처리된 리기다 소나무 시험편의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with piperazinomethyl-bisphosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl- bis-phosphonic acid (MDEDAP). Pinus rigida specimens were painted in three times with 15 wt% alkylenediaminoalkyl- bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were increased by due to the treated alkylenediaminoalkyl-bis-phosphonic acid solutios in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the later time to ignition (TTI) (148-116 s) and longer time to flameout (Tf) (633-529 s) than those of virgin plate by reducing the burnig rate. Compared with virgin pinus rigida plate, the specimens treated with the alkylenediaminoalkyl-bis-phosphonic acids showed partially low combustive properties. However the specimens treated with PIPEABP showed both the higher peak heat release rate (PHRR) (187.56 $kW/m^2$) and higher total heat release rate (THRR) (75.7 $MJ/m^2$) than those of virgin plate.

An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method (건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.75-85
    • /
    • 2018
  • The Grenpell tower fire in England in June of 2016 is a representative example of damage caused by a vertical fire spreading through external insulation. Organic insulation materials, which are widely used in external insulation, have the disadvantage that they have good insulation performance but are vulnerable to fire. Aluminum composite panels are used as exterior wall finishing materials, and plastics used in aluminum are regarded as the cause of vertical fire spread. Due to the steel frame used to secure the aluminum composite panel to the outer wall, a cavity is formed between the outer wall and outer wall finish. When a fire occurs on the outer wall, the flammable outer wall as well as the flame generated from the heat-insulating material spreads vertically through the cavity, resulting in damage to people and property. In Korea, material unit performance tests are carried out by the Ministry of Land, Infrastructure and Transport notice 2015 - 744. However, in the UK, the BS 8414 test is used to measure the vertical fire spreading time on the outer wall in real scale fire tests. In this study, the risk of external wall fire was evaluated in an actual fire by conducting a real scale wall fire test (BS 8414), which was carried out in Europe, using aluminum composite panels of semi-noncombustible materials suitable for current domestic standards. The purpose of this study was to confirm the limitations of material unit evaluation of finishing materials and to confirm the necessity of introducing a system to prevent the spread of outer wall fire through an actual scale fire test.

Evaluation of Combustion Gas for Carbon Oxide of Wood Coated with Bis-(dialkylaminoalkyl) Phosphinic Acids Additives

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.65-72
    • /
    • 2016
  • This study examined the generation of combustion toxic gases of pinus rigida specimens processed with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibutylaminomethyl) phosphinic acid (DBDAP). Each pinus rigida plate was coated three times with 15 wt.% flame retardants in an aqueous solution. The specimens were then dried at room temperature. The production of combustion toxic gases was investigated using a cone calorimeter (ISO 5660-1). The first time to peak mass loss rate ($1^{st}-TMLR_{peak}$) processed with the chemical additives decreased to 5.9 from 41.2% compared with the unprocessed specimen. The second time to the peak mass loss rate ($2^{nd}-TMLR_{peak}$) for the processed specimens was decreased 1.8% for DMDAP and 5.3% for DBDAP and increased 1.8% for DEDAP. The peak carbon monoxide ($CO_{peak}$) production was 1.5 to 2.0 times higher than that of the unprocessed plate. The peak carbon dioxide ($CO_{2peak}$) production was reduced 0.01 times for DMDAP and increased 1.15 to 1.19 times for DEDAP and DBDAP compared with the unprocessed specimens. In particular, the oxygen concentration was much higher than 15%, which can be fatal to humans and the resulting hazard can be eliminated. Overall, the combustion toxicity of flammable gas were increased partially by the chemical additives compared with those of the unprocessed plate.

Combustion Gas-emission of Medium Density Fibreboard (MDF) Treated with Alkylenediaminialkyl-bis-phosphonic Acids and Bis-(dimethylaminomethyl) Phosphinic Acid (알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.112-117
    • /
    • 2017
  • This study demonstrated the emission of combustion gases of medium density fibreboard (MDF)s coated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP), or bis-(dimethylaminomethyl) phosphinic acid (DMDAP). Each MDFs were coated in three times with a brush with 15 wt% aqueous solution of the phosphorus-nitrogen acid additives. After the specimens were dried at room temperature, the emission of combustion gases was tested using a cone calorimeter (ISO 5660-1, 2). The peak smoke production rate ($SPR_{peak}$) of the specimens coated with phosphorus-nitrogen acids was 18.5 to 41.5%, which is lower than that of using the virgin plate. However, the production of peak carbon monoxide ($CO_{peak}$) was 6.7 to 24.2% higher than that of using the virgin plate. Also, the peak carbon dioxide ($CO_{2peak}$) was 4.2 to 24.4% lower than that of using virgin plate. While the peak oxygen depletion rate was much higher than the level of 15%, which can be fatal to humans and the resulting risk could thus be eliminated. Overall, the combustibility of coated specimens was partially suppressed, but showed a negative effect on the reduction of carbon monoxide.

Flame Retardancy and Foaming Properties of the Waste-Polyethylene(W-PE)/Waste-Ethylene vinyl acetate copolymer(W-EVA) Blend Foams (폐폴리에틸린/폐에틸렌 비닐아세테이트공중합체 블렌드 발포체의 난연 및 발포 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 2003
  • The blends of waste-polyethylene (W-PE)/waste-ethylene vinyl acetate copolymer (W-EVA) with inorganic and phosphorous flame retardants (i.e., aluminium hydroxide, magnesium hydroxide, and so on) were prepared by melt mixing techniques at different compositions and foamed. The flame retardancy and foaming properties of the blends, limiting oxygen index (LOI), heat release rate (HRR), carbon monoxide yield (COY), total heat release (THR), effective heat of combustion (EHC), expandability and cell structure were investigated using cone calorimeter, SEM, LOI tester and polarizing microscope. When the composition ratios of the W-PE/W-EVA blends were 50/50 (w/w), and the ranges of the flame retardants contents were $175{\sim}220 phr$, we could obtain foams with the uniform and closed cell, high expandability (1900 % or more), high LOI, and low HRR values. These results depend on crosslinking and loaming conditions, a char formation and smoke suppressing effect. Aluminium hydroxide had more effect in the increase of LOI than magnesium hydroxide, while magnesium hydroxide considerably affected the decrease of HRR and COY.

Evaluation of Combustion gas during Fire Tests of Veneers Coated with Ammonium Salts (암모늄염으로 도포시킨 베니어판의 연소 시에 발생하는 연소가스 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2016
  • This study tested the combustion characteristics of veneer specimens coated with four kinds of ammonium salts. Each veneer specimen was coated three times with 20 wt.% ammonium salt solutions at room temperature. After drying, the combustion characteristics of the specimens coated with chemicals, were investigated using the cone calorimeter (ISO 5660-1, 2). The specimens coated with monoammonium phosphate (MAPP) and, diammonium phosphate (DMPP) showed a 6.7% and, 10.0%, lower mean heat release rate ($HRR_{mean}$), respectively, than that of the uncoated specimen. On the other hand, the specimens coated with MAPP showed a 15.7% higher $CO_{peak}$ production rate and the specimens coated with DAPP showed by 8.2% lower rate than that of the uncoated specimen. The veneer coated with ammonium sulfate (AMSF) and DAPP showed a 9.6% and 33.3% lower the peak smoke production rate ($SPR_{peak}$) than that of the uncoated specimen. In addition, the time to the peak smoke extinction area ($SEA_{peak}$) was delayed by 38.4% in the specimens coated with DAPP than the uncoated specimen. Therefore, DAPP inhibited the combustion properties of the veneer and showed a tendency to reduce smoke production.

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.

Combustive Properties of Medium Density Fibreboards (MDF) Treated with Bis-(Dimethylaminomethyl) Phosphinic Acid and Alkylenediaminoalkyl-Bis-Phosphonic Acids (비스-디메틸아미노메틸 포스핀산과 알킬렌디아미노알킬-비스-포스폰산 유도체에 의해 처리된 중밀도 섬유판의 연소특성)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.71-79
    • /
    • 2014
  • This study was performed to test the combustive properties of Medium Density Fibreboards (MDFs) treated with chemicals of the bis-(dimethylaminomethyl) phosphinic acid (DMDAP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (DMDEDAP), piperazinomethyl-bis-phosphonic acid (PIPEABP), and methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP). MDFs were painted in three times with 15 wt% solution of the bis-(dimethylaminomethyl) phosphinic acid and alkylenediaminoalkyl-bis-phosphonic acids at the room temperature, respectively. After drying MDF treated with chemicals, combustive properties and volatile organic compounds (VOCs) contents were examined by the cone calorimeter (ISO 5660-1), test for flame retardant (NEMA Notice No. 2012034), and gas chromatography (KS M ISO 11890-2), respectively. It was indicated that the MDFs treated with chemicals showed the longer time to combustion time (CT) = (442~492) s than that of virgin plate by reducing the burning rate except for CT treated with DMDAP. In adition, the MDFs treated with chemicals showed both of the higher char area (44.33~61.33) kg/kg and char length (10.33~11.67) cm than those of virgin plate. Especially, the MDFs treated with chemicals showed the higher mean volatile organic compounds (VOCs) (0.188~0.333) g/L than that of virgin plate within the prescribed limits. Thus, It is supposed that the combustion- retardation properties were improved by the partial due to the treated chemicals in the virgin MDF.

Combustion Chracteristics of Wood Treated with Bis-(dialkylaminoalkyl) Phosphinic Acids (비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid (DBDAP). Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It is supposed that the combustion-retardation properties were improved by the partial due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the lower total smoke release rate (TSRR) ($16.94{\sim}18.92m^2/m^2$) and lower $CO_{2mean}$ production (1.98~2.09 kg/kg) than those of virgin plate. However the specimens treated with chemicals showed both the higher peak mass loss rate (PMLR) (0.1250~0.1297 g/s) and higher 1st-smoke production rate (SPR) (0.0153~0.0167 g/s) than those of virgin plate. Compared with virgin Pinus rigida plate, the specimens treated with the bis-dialkylamimoalkyl phosphinic acids showed partially low combustive properties.