• Title/Summary/Keyword: Cone Wheel

Search Result 13, Processing Time 0.027 seconds

Real Time Prediction of Rating Cone Index using Measured Wheel Sinkage and Slip (차륜 슬립과 침하를 이용한 실시간 정격 원추 지수 예측)

  • Nam, Joo-Suck;Kim, Dae-Cheol;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.205-210
    • /
    • 2009
  • It has been known from Willoughby's empirical equation that rating cone index can be determined if wheel sinkage and slip of a vehicle can be measured on soil surface. A field data of wheel sinkage and slip was collected from two tractors of different sizes on gravelly sand and gravelly loamy sand. Using the data, rating cone index of the soil was estimated. The estimated rating cone index demonstrated that it could be determined in real time by measuring wheel sinkage and slip. It was also demonstrated statistically that the same soil strength could be obtained under the same soil conditions regardless of the vehicle platforms used for the wheel sinkage and slip measurements.

The Study on Driving Characteristics of Crane Wheel Shape (크레인 휠 형상에 따른 구동 특성에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.185-195
    • /
    • 2000
  • This pacer studied on the lateral motion and yaw motion of the gantry crane which is used for the automated container terminal with two driving wheel types. Though several problems are occcurred in driving of gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operation. There are two types, cone and flat t y pin driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane with two driving wheel types are derived. Then, we investigate the driving characteristics of gantry crane. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and yaw angle of the gantry crane. The simulation result of the driving mechanism using the Runge-Kutta Method is presented in this paper.

  • PDF

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF

Development of Unmanned Seabed type Marine Cone Penetration Testing System (무인 착저식 해양 콘관입시험기 개발)

  • Jang, In-Sung;Kwon, O-Soon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.611-622
    • /
    • 2007
  • In the design and construction of the coastal/offshore structures, it is very important to evaluate the geotechnical characteristics of marine soils, which support the structures. Although the offshore site investigation is much more difficult than onshore, safe and precise jobs have not been accomplished in Korea because of the insufficiency of the test equipments especially for the site with deep water depth. The main objective of this study is to develop a new type of marine cone penetration testing(CPT) system, which can be utilized to even deep sea and high depth of soil layer. The system is one of seabed types and employs the conventional cone, which shows more reliable results than miniature cone. The most important parts of the marine CPT including continuous rod system, cone penetration system with wheel drive, automatic cone rod assembly/dissembly system etc., were designed and manufactured. Some tests to verify the developed marine CPT system were performed at both onshore and offshore sites as well as mechanical test in laboratory. The test results show the consistent and promising performance of the new equipment, and thereafter the system would be applicable to various sites with practical/economical advantages.

  • PDF

A Study on the Mobility of Power Tiller in Wetland Rice Field (수도포장(水稻圃場)에서의 동력경운기(動力耕耘機) 주행성(走行性)에 관(関) 연구(硏究))

  • Lee, Kyou Seung;Lee, Yong Kook;Lee, Choong Yong;Park, Seung Je;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.8-18
    • /
    • 1984
  • To investigate the most important factors affecting the mobility of power tiller and to find the method which can be used for predicting the mobility of power tiller in soft paddy field, a series of field experiment was performed with two models of power tiller (8ps and 6ps diesel). From the results obtained throughout field experiment, the following conclusions were derived. 1. The wheel sinkage of power tiller during both traveling and field operations, which mainly influence the mobility, could be predicted from both plate ($50{\times}100mm$) sinkage and soil cone index (30-degree cone with 2 and $6cm^2$ base area). 2. Prediction of wheel sinkage from the rectangular plate sinkage was found to be more suitable compared with the cone index. 3. The upper limit of rectangular plate sinkage was found as 15 centimeter for operation of power tiller in muddy field which is equivalent of $1kg/cm^2$ of $2cm^2$ cone index value.

  • PDF

Performance Prediction of Powered-Rigid Wheel by Model Tests (사토(砂土)에 있어서 모델 테스트에 의한 차륜(車輪)의 성능(性能) 예측(豫測)에 관한 연구(硏究))

  • Lee, K.S.;Lee, Y.K.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 1988
  • A series of soil bin experiments was carried out on land to evaluate the soil physical properties whether they are pertinent to soil-wheel system and to investigate if true model theory u applicable to powered rigid wheel-soil system. Four different sized wheels having diameter of 45, 60, 75 and 90 em were wed for the experiment. The following conclusion was derived from the study. (1) True model theory can be sufficiently utilized to study the wheel traction and linkage on lands. (2) For both dry and wet sands, Cone Index(CI) and soil shear parameters (c, ${\phi}$) with bulk density (${\gamma}$) were found to be good measures of soil physical properties which are pertinent to predict the performance of the powered rigid wheel-soil system.

  • PDF

3D Modeling of Ground Surface with Statistical Method (통계적방법을 이용한 연삭표면의 3차원모델링)

  • 김동길;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

The Study on Yaw Motion of Crane Driving Mechanism (크레인 구동부의 Yaw Motion에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.336-336
    • /
    • 2000
  • This paper studied on the yaw motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But if the gantry crane is unmanned, it is automatically controlled without any human operation. There are two types, cone and flat typo in driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. To bring a solution to these problems, the dynamic equation of the gantry crane driving mechanism is derived and it used PD(Proportional-Derivative) controller to control the lateral vibration. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs (PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.