• Title/Summary/Keyword: Conductor temperature

Search Result 492, Processing Time 0.028 seconds

A Study on the Economical Design of Low-Voltae feeder Considering the temperature character (온도특성을 고려한 저압간선의 경제적인 설계기법에 관한 연구)

  • 최홍규;조계술
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.349-354
    • /
    • 2002
  • A size of low-voltage conductor cables is determined by the voltage drop of a system, the cable impedance and the cable ampacity based on temperature correction factor in accordance with the condition of cable installation. Therefore, the proper temperature correction factor according to the condition of cable installation should be applied to determining the cable ampacity and also the skin effect and proximity effect, along with the kind and size of conductor and the condition of cable installation, should be properly considered to analyze the proper value of resistance and the reactance of the conductors. This paper addresses the systematic design flow for determining the size of low voltage level conductor cables in calculating the temperature character where error should be minimized in comparison with the general formula and which can be applied in design work for determining the size of conductor cables.

  • PDF

A Temperature dependancy and dielectric/insulation properties for power cables (전력케이블용 반도전층의 유전/절연특성과 온도 의존성)

  • Lee, Jong-Chan;Her, In-Sung;Kim, Kwang-Soo;Park, Dae-Hui;Lee, Jae-Kwan;Kim, Dong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1463-1466
    • /
    • 2002
  • In this paper, the thermal analysis and dielectric/insulation properties were investigated with considering the temperature depenence Using the sheet of semi-conductor/XLPE came from 22 kV power cables, the dielectric/insulation properties and temperature dependence were measured under 1kHz. According to the results we can verify that only semi-conductor sheet changed linearly, and with the unstable results. the dielectric/insulation properties of the semi-conductor/XLPE sheet show the highest value in the range of 40 $^{\circ}C$ and 50 $^{\circ}C$ and are rely on XLPE rather than semi-conductor in terms of the temperature.

  • PDF

Development of a 1.8T HTS Insert Coil for High Field Magnet (고자장 자석용 1.8T HTS insert 코일 개발)

  • Bae, Joon-Han;Seong, Ki-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1035-1038
    • /
    • 2007
  • We designed and manufactured a 1.8T high temperature superconducting(HTS) insert coil for a NMR magnet operated at 4.2 K. Suitable HTS superconductor and HTS coil were carefully designed and developed. We have selected multi-filamentary Bi2223 conductor fabricated by American Superconductor Corporation(AMSC). The selected conductor consists of Bi2223 filaments of 55, silver stabilizer and stainless steel reinforcement tapes. Therefore, it shows good hoop strength as well as compression tolerance. The conductor has a tape cross-section of 0.31mm x 4.8mm. the Bi2223 conductor shows large anisotropy of critical current. The critical current of conductor in magnetic field parallel to the flat surface are much higher than that in magnetic field perpendicular. The HTS coil has an inner diameter of 78 mm, an outer diameter of 127 mm and a coil length of 600 mm. In this paper, the detailed design, fabrication and test results on the HTS insert coil are presented.

The effect of deposition temperature/pressure on the superconducting properties of YBCO coated conductor (YBCO coated conductor의 초전도 특성에 미치는 박막 증착 온도/압력의 영향)

  • Park, Chan;Ko, Rok-Kil;Chung, Jun-Ki;Choi, Soo-Jeong;Song, Kyu-Jeong;Park, Yu-Mi;Shin, Ki-Chul;Shi, Dongqi;Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.30-33
    • /
    • 2003
  • YBCO coated conductor, also called the 2nd generation high temperature superconducting wire, consists of oxide multi-layer hetero-epitaxial thin films. Pulsed laser deposition (PLD) is one of many film deposition methods used to make coated conductor, and is the one known to be the best to make superconducting layer so far. As a part of the effort to make long length coated conductor, the optimum deposition condition of YBCO film on single crystal substrate (SrTiO3) was investigated using PLD. Substrate temperature, oxygen partial pressure, and laser fluence were varied to find the best combination to grow high quality YBCO film.

  • PDF

Heat Characteristics of Electric Fittings for Power Transmission Line (송배전 접속 금구류의 도전 열특성에 관한 연구)

  • 이창식;진양덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.697-702
    • /
    • 1989
  • This study deals with the heat cycle characteristics of sleeve connector of aluminum stranded conductors steel reinforced(ACSR). In order to investigate the effect of heat cycle on the sleeve connector of stranded conductor, experimental study has been performed for both the temperature rising and electrical resistance of sleeve connector. Also, the effect of changes in surrounding temperature on the allowable current of sleeve connector was studied in order to investigate the influence on the connector size of conductor. Under the given test conditions of heat cycle, the temperature rising s decreased with the increase of sleeve size of conductor. The deviation of resistance of sleeve connector in conductor decreased with the increase in the size of sleeve connector.

Analysis of Distribution Power System with Thermal Conductor Distribution Lines (내열 도체가 적용된 가공 배전선의 적용 영향에 관한 연구)

  • Kim, Myong-Hyon;Lee, Kyone-Tae;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.243-244
    • /
    • 2015
  • Power system has been improved during for a long time by customers demand. Power suppliers has researched the power system component for more electricity transmission. One of the research is apply the thermal conductors in new cable. The operational temperature of thermal conductors is higher than normal aluminum that thermal conductor is composed of aluminum, Zr(zirconium) and etc. Increase of operational temperature is growth of the transmission capability. Power suppliers was concerned about the increase of operation temperature by thermal conductors. Therefore, the thermal conductor has the possibility that expanded application in power system. In this paper analysed effect of thermal conductor in power distribution system.

  • PDF

The Finite Element Analysis and the Geometric Optimal Design of Linear Motor (리니어 모터의 유한요소해석과 기하학적 최적설계)

  • Lee Tae Won;Jung Jae Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.67-74
    • /
    • 2004
  • Linear motor has been considered to be the most suitable electric machine for high speed and high precision linear motion control. Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiment. The temperature of the conductor was calculated by the thermal resistance which was measured by experiment. The optimum design process was coded by the ADPL of ANSYS which is a commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

A Study on Stability of Ag sheathed Bi-2229 tape and Cylindrical Stacking Conductor for HTS Cable (고온초전도 케이블용 은시스 Bi-2223 테이프 및 적층 도체의 안정성연구)

  • Lee, B.S.;Kim, Y.S.;Jang, H.M.;Back, S.M.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1554-1556
    • /
    • 2000
  • Normal zone propagation(NZP) characteristics were investigated on Ag sheathed multi filamentary Bi-2223 tape and cylindrical stacking conductor. The critical current($I_c$) of Ag sheathed Bi-2223 tape and cylindrical stacking conductor were 12 A, 63 A at 77 K, 0 T. Normal zone propagation(NZP) experiments with tape were conducted with refrigerator in temperature from 45 K to 77 K, 0 T. Cylindrical stacking conductor was molding with epoxy and experiments were conducted with adiabatic condition in $LN_2$. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. Temperature ($T_1$) of tape with distance of 0.5 cm from heater was strongly climbed up to 95K and slowly decreased. NZP velocities of cylindrical stacking conductor were 1.9-2.4 cm/sec in $LN_2$.

  • PDF

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Development of High Strength and Low Loss Overhead Conductor(II) - Electric Properties (고강도 저손실 가공송전선의 개발(II) - 전기적 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Park, Joo-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1159-1165
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the Process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material NM wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. The conductivity at 0.78 mm thickness of Aluminum cladded M wire is about $7\%$ IACS higher than $20\%$IACS of HC wire used as core of commercial ACSR overhead conductor. The corrosion resistance is about 3 times higher than that of HC wire.