• Title/Summary/Keyword: Conductivity performance

Search Result 1,227, Processing Time 0.027 seconds

Effects of Tungsten Particle Size and Nickel Addition in DC arc Resistance of Cu-W Electrode

  • Kim, Bong-Seo;Jeong, Hyun-Uk;Lee, Hee-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.68-72
    • /
    • 2004
  • The performance of copper-tungsten for electrodes used in an ultra high voltage interruption system was evaluated by means of an interruption test, which requires a large-scale apparatus and high cost. In this study, prior to the interruption test, the characteristics of a Cu-W electrode were estimated through the DC arc test, which is a simple, low cost procedure. The DC arc characteristics of a 20wt%Cu-80wt%W electrode were investigated with the change of tungsten powder size distribution and the addition of nickel. In specimens containing a high volume fraction of large sized tungsten particles, the relative density and hardness of sintered Cu-W electrodes increased while the electrical conductivity and the DC arc resistance decreased. Furthermore, the relative density became enhanced with the increase of the amount of nickel while the hardness and electrical conductivity diminished and the DC arc resistance worsened.

Electrorheological Properties of Anhydrous ER Suspensions Based on Phosphated Cellulose (인산처리 셀룰로오스를 첨가한 비수계 ER 유체의 전기유변학적 특성)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphated cellulose particles (average particle size 17.77 ${\mu}{\textrm}{m}$) was investigated at room temperature with electric fields up to 2.5 KV/mm. In this paper, for development of anhydrous ER suspensions using at wide temperature range, we would like to know fundamental understandings on the ER activity. As a first step, the anhydrous ER suspensions dispersed the phosphated cellulose particles were measured, and not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on strength of electric field and quantity of dispersed phase were studied. From the experimental results, the anhydrous ER suspensions dispersed phosphated cellulose particles showed a stable current density and very high performance of ER effect $(\tau/\tau_0=1030)$ on the 2.5 KV/mm and the dynamic yield stress $(\tau_y)$ was in exponential proportion to the strength of electric fields.

Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids (나노유체의 수직유동 속에 놓인 가는 열선주위의 대류열전달계수 측정)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Recent researches on nanofluids have mainly focused on the increase of thermal conductivity of nanofluids under static condition. The ultimate goal of using nanofluids, however, is to enhance the heat transfer performance under fluid flow. So it has been highly necessary to devise a simple and accurate measuring apparatus which effectively compares the heat transfer capability between the base and nanofluids. Though the convective heat transfer coefficient is not the complete index for the heat transfer capability, it might be one of useful indications of heat transfer enhancement. In this article, the working principles of experimental system for convective heat transfer coefficient around a heated fine wire in cross flow of nanofluids and its application example to three samples of nano lubrication oils are explained in detail.

Study of Au-PTFE/Al Metallic bipolar plate for PEMFC (고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구)

  • Yoo, Seung-Eul;Kim, Myong-Hwan;Goo, Young-Mo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF

Hydrogen Supplying System using Metal Hydride (금속 수소화물을 이용한 수소공급시스템)

  • Bae, Sang-Chul;Katsuta, Masafumi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.13-19
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1 MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristics, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results are compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Electrical Properties and Structures of Spinel Type LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$) Doped with Transition Metal (전이금속으로 치환된 Spinel형 LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$)의 구조 및 전기적 성질)

  • 형경우;김중헌;권태윤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.930-936
    • /
    • 1999
  • For LiMn2O4 based spinel structures the stoichiometric reaction conditions need be considered carefully because the electrical properties depend on the structural stability. In order to obtain the homogeneous compound the Pechini process was chosen which could obtain a stoichiometry phase even low temperature and dependency of the synthetic condition on structural stability and electrochemical performance was investigated. X-ray diffraction studies showed that the compounds doped with transition metal have smaller lattice constants than those un doped. The dc conductivity was evaluated by a four probe method in the low and high temperature region respectively. The variations of basal spacings for the cathode were detected to be dependent on the extent of current flows (under dc)

  • PDF

A Study on Advanced Lithium-Ion Battery with Polyurethane-Based Gel Polymer Electrolyte (Polyurethane기 겔폴리머전해질을 이용한 Advanced Lithium-Ion Battery에 관한 연구)

  • 김현수;문성인;윤문수;김상필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.252-254
    • /
    • 2002
  • In this study, polyurethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte, and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/MCF cells were also prepared and their performances depending on discharge currents and temperatures were evaluated. ionic conductivity of the gel polymer electrolyte with PUA at room temperature and -20$^{\circ}C$ was ca. 4.5 x 10$\^$-3/ S/cm and 1.7${\times}$10$\^$-3/ S/cm, respectively. GPE was stable electrochemically up to 4.5 V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/MCF cell showed a good high-rate and a low-temperature performance.

  • PDF

The Research on Performance of PCB type of Solar cell BusBar Formed by Layer Structure (적층구조로 형성된 PCB형 태양전지용 BusBar의 성능에 관한 연구)

  • Jeon, Taeg-Jong;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.102-107
    • /
    • 2012
  • The purpose of thesis is to improve output of solar cell module by enhancing transmission efficiency. To improve transmission efficiency, transmission interconnection ribbon which is used to connect solar cells and busbar which contacts with it has been improved. To secure reliability, comparison research on output of solar cell modules has been conducted by manufacturing PCB module formed by laminated metal with the same output. The result of this research is based on a output efficiency test of modules by comparing electric conductivity of soldering busbar and laminated PCV type of busbar.

  • PDF

A study on the Electric Characteristics of Polyimide Ultra Thin through LB-Method (Langumir-Blodgett법으로 제작된 polyimide 超薄膜(초박막)의 전기적특성(電氣的特性))

  • Park, Sang-Hyun;Yun, Sung-Do;Cheong, Hak-Su;Kook, Sang-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.63-66
    • /
    • 1992
  • Using an aromatic system, we made a ultra thin insulator through LB-method. We measured and wrote down afternating currant characteristics of ultraviolet rays extincting-spectrum and I.R extincting-spectrum. We surveyed the thickness of a film through X-ray diffracting method and certified about $4{\AA}$ by the layer. Measuring the characteristics of direct current voltage and electric current with this sample, we produced its conductivity and discovered that this sample had a god insulating performance. Addition to this, we measured the characteristics of voltage and electric current, and the temperature dependency of conductivity in a high voltage system and with these results tried to interpret a mechanism of conduction.

  • PDF

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.