• 제목/요약/키워드: Conductivity performance

검색결과 1,227건 처리시간 0.024초

고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향 (Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell)

  • 김득주;남상용
    • 멤브레인
    • /
    • 제22권3호
    • /
    • pp.155-170
    • /
    • 2012
  • 연료전지는 석유엔진과 비교하여 높은 전류밀도와 효율성, 그리고 친환경적이기 때문에 21세기 들어 대체 발전시스템으로서 각광받아왔다. 연료전지 시스템에서 고분자 전해질 막은 핵심부품으로써 현재 Nafion막이 연료전지시스템에서 사용 중이지만 높은 제조단가와 고온에서 낮은 전도도를 가지는 단점을 가지고 있다. 그러므로 많은 학자들이 낮은 제조단가, 높은 물리적 특성들을 달성하기 위한 연구를 진행하여 왔으며 연료전지의 상용화와 동시에 고성능의 연료전지의 개발을 위하여 많은 방법들이 개발되어 왔다. 그중, 유무기 복합막은 유기물과 무기물의 물성을 균일하게 조합할 수 있으므로 잠재성을 가지고 있는 제조방법이다. 본고에서는 다양한 무기물이 사용되어 제조된 유무기 복합막의 연구동향에 대하여 조사하였다.

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성 (Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion)

  • 유지행;김영운;박건우;서두원;이시우;우상국
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • 제55권1호
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

A Study on Sintering Inhibition of La0.8Sr0.2MnO3- Cathode Material for Cathode-Supported Fuel Cells

  • Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.494-499
    • /
    • 2016
  • In this work, the effects of different sintering inhibitors added to $La_{0.8}Sr_{0.2}MnO_{3-{\partial}}$ (LSM) were studied to obtain an optimum cathode material for cathode-supported type of Solid oxide fuel cell (SOFC) in terms of phase stability, mechanical strength, electric conductivity and porosity. Four different sintering inhibitors of $Al_2O_3$, $CeO_2$, NiO and gadolinium doped ceria (GDC) were mixed with LSM powder, sintered at $1300^{\circ}C$ and then they were evaluated. The phase stability, sintering behavior, electrical conductivity, mechanical strength and microstructure were evaluated in order to assess the performance of the mixture powder as cathode support material. It has been found that the addition of $Al_2O_3$ undesirably decreased the electrical conductivity of LSM; other sintering inhibitors, however, showed sufficient levels of electrical conductivity. GDC and NiO addition showed a promising increase in mechanical strength of the LSM material, which is one of the basic requirements in cathode-supported designs of fuel cells. However, NiO showed a high reactivity with LSM during high temperature ($1300^{\circ}C$) sintering. So, this study concluded that GDC is a potential candidate for use as a sintering inhibitor for high temperature sintering of cathode materials.

실란계 복합화 무기물을 이용한 SPAES 복합막의 특성평가 (Characterization of SPAES Composite Membrane Using Silane Based Inorganics)

  • 우창화;김득주;남상용
    • 멤브레인
    • /
    • 제25권5호
    • /
    • pp.456-463
    • /
    • 2015
  • 본 연구에서는 고온에서 우수한 전도성을 가지는 전해질막의 개발을 위하여 신규한 실란계 무기물을 합성하였으며, 이를 이용하여 제조된 분리막의 특성평가가 진행되었다. 탄화수소계열 고분자인 SPAES를 합성하여 고분자 물질로 사용하였으며, 높은 이온전도성을 가지는 무기물의 제조를 위하여 silica, phosphate, zironium계 물질을 졸겔법을 이용하여 복합화 시켰다. 각 조성의 몰비를 조절하여 세 가지 종류의 무기물을 제조하였으며 조성에 따른 물성변화를 관찰하였다. EDX 분석결과 제조된 무기물은 고분자 분리막 내에 고르게 분산이 되는 것을 확인하였다. 친수성을 가지는 무기물의 도입을 통하여 분리막 내에 이온을 전달할 수 있는 수분채널이 형성되어 함수율이 증가가 됨을 확인하였다. 또한 zirconium계 무기물의 함량이 높을수록 고온에서 전도도가 향상되는 결과를 확인하였으며 복합화된 실리카는 저온 가습조건에서 이온전도도가 향상되는 결과를 나타내었다.

근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석 (Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region)

  • 이원선;이원희;허정
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.59-65
    • /
    • 2019
  • 노이즈 소스의 근거리장에 저전도율 차폐막이 놓여있을 때 차폐막 두께에 따른 EMI 차폐효과를 분석하였다. 노이즈 소스로는 광대역 특성을 갖는 나선형 안테나를 이용하였으며, 저전도율 차폐 재료로는 그래파이트를 선정하였다. 나선형 안테나 두 개를 만들어 두 안테나 사이의 투과계수를 분석하였고, 송수신 안테나 사이의 거리는 5 cm와 10 cm인 두 경우에 대해 수행하였다. 차폐막의 두께는 1 um에서 200 um까지 변화시켰다. 주파수는 100 MHz에서 6 GHz까지 변화시켜 최대 70 dB의 SE(Shielding Effectiveness)를 얻었다. 본 시뮬레이션에서는 차폐막 재료인 그래파이트의 특성상 전기적 차폐(electronic shielding)를 이용하였다. 이 결과를 바탕으로 향후 자기 차폐를 구현하여 차폐 성능을 향상시킬 수 있는 방법을 연구할 예정이다.

몰리브덴 스퍼터링 처리 의류소재의 열적 특성과 전기적 특성에 관한 연구 (A study on thermal and electrical properties of molybdenum sputtered clothing materials)

  • 한혜리
    • 복식문화연구
    • /
    • 제30권1호
    • /
    • pp.88-101
    • /
    • 2022
  • Molybdenum is used in electrical contacts, industrial motors, and transportation materials due to its remarkable ability to resist heat and corrosion. It is also used to flame coat other metals. This study investigated, the thermal characteristics of the molybdenum sputtered material, such as electrical conductivity, and stealth effects on infrared thermal imaging cameras. To this end, molybdenum sputtered samples were prepared by varying the density of the base sample and the type of base materials used. Thereafter, the produced samples were evaluated for their surface state, electrical conductivity, electromagnetic field characteristics, thermal characteristics, stealth effect on infrared thermal imaging cameras, and moisture characteristics. As a result of infrared thermal imaging, the molybdenum layer was directed towards the outside air, and when the sample was a film, it demonstrated a greater stealth effect than the fabric. When the molybdenum layer was directed to the outside air, all of the molybdenum sputtering-treated samples exhibited a lower surface temperature than the "untreated sample." In addition, as a result of confirming electrical properties following the molybdenum sputtering treatment, it was determined that the film exhibited better electrical conductivity than the fabric. All samples that were subjected to molybdenum sputtering exhibited significantly reduced electromagnetic and IR transmission. As a result, the stealth effect on infrared thermal imaging cameras is considered to be a better way of interpreting heat transfer than infrared transmission. These results are expected to have future applications in high-performance smartwear, military uniforms, and medical wear.

수열합성법을 이용한 Flower-Like 형상의 Al2O3 Nanostructure 제조 및 BN/Al2O3 복합체의 방열 특성 연구 (Preparation of Flower-Like Al2O3 Nanostructures by Hydrothermal Synthesis and Study of Thermal Properties of BN/Al2O3 Composites)

  • 송노건;정용진
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.633-637
    • /
    • 2023
  • Recently, with the development of the smart device market, the integration of high-functional devices has increased the heat density, causing overload of the device, and resulting in various problems such as shortened lifespan, performance degradation, and failure. Therefore, research on heat dissipation materials is being actively conducted to realize next-generation electronic products. The heat dissipation material is characterized in that it is easy to dissipate heat due to its high thermal conductivity and minimizes leakage current flowing through the heat dissipation material due to its low electrical conductivity. In this study, flower-shaped Al2O3 and BN composites were engineered with a simple hydrothermal synthesis approach, and their thermal conductivity characteristics were compared and evaluated for each synthesis condition for the application to a heat dissipation material. Spherical BN and flower-shaped Al2O3 were easily obtained, and SEM/EDS analyses confirmed the uniform presence of BN between the Al2O3, and it can be expected that these shapes can affect the thermal conductivity.

REDUCTION OF THERMAL CONDUCTIVITY THROUGH THE DISPERSION OF TiC NANOPARTICLES INTO A P-TYPE Bi0.5Sb1.5Te3 ALLOY BY BALL MILLING AND SPARK PLASMA SINTERING

  • CHEENEPALLI NAGARJUNA;BABU MADAVALI;MYEONG-WON LEE;SUK-MIN YOON;SOON-JIK HONG
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.551-557
    • /
    • 2019
  • The dispersion of nanoparticles in the host matrix is a novel approach to enhance the thermoelectric performance. In this work, we incorporate the TiC (x = 0, 1 and 2 wt.%) nanoparticles into a p-type Bi0.5Sb1.5Te3 matrix, and their effects on microstructure and thermoelectric properties were systematically investigated. The existence of TiC contents in a base matrix was confirmed by energy dispersive X-ray spectroscopy analysis. The grain size decreases with increasing the addition of TiC content due to grain boundary hardening where the dispersed nanoparticles acted as pinning points in the entire matrix. The electrical conductivity significantly decreased and the Seebeck coefficient was slightly enhanced, which attributes to the decrease in carrier concentration by the addition of TiC content. Meanwhile, the lowest thermal conductivity of 0.97 W/mK for the 2 wt.% TiC nanocomposite sample, which is ~16% lower than 0 wt.% TiC sample. The maximum figure of merit of 0.90 was obtained at 350 K for the 0 wt.% TiC sample due to high electrical conductivity. Moreover, the Vickers hardness was improved with increase the addition of TiC contents.