• Title/Summary/Keyword: Conductivity Analysis

Search Result 1,824, Processing Time 0.035 seconds

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

Modeling on thermal conductivity of MOX fuel considering its microstructural heterogeneity

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.247-247
    • /
    • 1999
  • This paper describes a new mechanistic thermal conductivity model considering the heterogeneous microstructure of MOX fuel. Even though the thermal conductivities of MOX have been investigated numerously by experimental measurements and theoretical analyses, they show the large scattering making the performance analysis of MOX fuel difficult. Therefore, a thermal conductivity model that depends on the heterogeneous microstructure of MOX fuel has been developed by using a general two-phase thermal conductivity model. In order to apply this model for developing the thermal conductivity for heterogeneous MOX fuel, the fuel is assumed to consist of Purich particles and U02 matrix including Pu02 in solid solution. Since little relevant data on Purich particles is available, FIGARO and SiemensKWU results are only used to characterize the microstructure of unirradiated and irradiated fuel. Philliponneaus and HALDEN models are selected for the local thermal conductivities for Purich particles and matrix, respectively. Then by combining the two models, overall thermal conductivity of MOX fuel is obtained. The new proposed model estimates the MOX thermal conductivity about 10% less than the value of U02 fuel, which is in the range of MOX thermal conductivity from HALDEN. The developed thermal conductivity model has been incorporated into KAERIs fuel performance code, COSMOS, and then verified using the measured data in the FIGARO program. Comparison of predicted and measured temperatures shows the reasonable agreement within acceptable error bounds together with satisfactory results for the fission gas release and gap pressure.essure.

  • PDF

Groundwaterflow analysis of discontinuous rock mass with probabilistic approach (통계적 접근법에 의한 불연속암반의 지하수 유동해석)

  • 장현익;장근무;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges (황과 산소를 함유하는 새로운 Schiff Base 고분자의 합성, 특성분석, 열적 안정성과 전도성)

  • Culhaoglu, Suleyman;Kaya, Ismet
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.225-234
    • /
    • 2015
  • In this study, we proposed to synthesize thermally stable, soluble and conjugated Schiff base polymer (SbP). For this reason, a specific molecule namely 4,4'-thiodiphenol which has sulfur and oxygen bridge in its structure was used to synthesize bi-functional monomers. Bi-functional amino and carbonyl monomers namely 4,4'-[thio-bis(4,1-phenyleneoxy)] dianiline (DIA) and 4,4'-[thiobis(4,1-phenyleneoxy)]dibenzaldehyde (DIB) were prepared from the elimination reaction of 4,4'-thiodiphenol with 4-iodonitrobenzene and 4-iodobenzaldehyde, respectively. The structures of products were confirmed by elemental analysis, FTIR, $^1H$ NMR and $^{13}C$ NMR techniques. The molecular weight distribution parameters of SbP were determined by size exclusion chromatography (SEC). The synthesized SbP was characterized by solubility tests, TG-DTA and DSC. Also, conductivity values of SbP and SbP-iodine complex were determined from their solid conductivity measurements. The conductivity measurements of doped and undoped SbP were carried out by Keithley 2400 electrometer at room temperature and atmospheric pressure, which were calculated via four-point probe technique. When iodine was used as a doping agent, the conductivity of SbP was observed to be increased. Optical band gap ($E_g$) of SbP was also calculated by using UV-Vis spectroscopy. It should be stressed that SbP was a semiconductor which had a potential in electronic and optoelectronic applications, with fairly low band gap. SbP was found to be thermally stable up to $300^{\circ}C$. The char of SbP was observed 29.86% at $1000^{\circ}C$.

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

Estimation of Thermal Conductivity and Diffusivity by an Inverse Analysis (역해석에 의한 열전도율 및 확산율 예측)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.397-402
    • /
    • 2012
  • The objective of this study is the estimation of the two unknown thermal conductivity and thermal diffusivity by an inverse heat conduction analysis using the Levenberg-Marguardt method. One dimensional formulation of heat conduction problem in the model was applied. Two point transient temperature of test pieces and heat flux of inflow were measured under the high enthalpy flow environment. Estimated thermal conductivity and thermal diffusivity by an inverse analysis were compared with the known values of graphite test piece. It showed the effectiveness of proposed experimental inverse analysis.

  • PDF

Grain Size Dependence of Ionic Conductivity of Polycrystalline Doped Ceria

  • Hong, Seong-Jae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.122-127
    • /
    • 1998
  • Conductivities of polycrystalline ceria doped with several rare earth oxides were measured by AC admittance and DC four probe method. The conductions were separated into grain and grain boundary contributions using the complex admittance technique as well as grain size dependence of conductivity. The grain size dependence of polycrystalline conductivity, which can be adequately described by the so-called brick layer model, appears to give a more reliable measure of the grain conductivity compared to the complex admittance method. Polycrystalline resistivity(1/conductivity) increases linearly with the reciprocal of grain size. The intercept of resistivity vs. inverse grain size plot gives a measure of the grain resistivity and the slope gives a measure of the grain boundary resistivity. It was also noted that errors involved in the analysis of experimental data may be different between the complex admittance method and the impedance method. A greater resolution of the spectra was found in the complex admittance method, insofar as the present work is concerned, suggesting that the commonly used equivalent circuit may require re-evaluation.

  • PDF

Measuring Thermal Conductivity of Nanofluids and Heat Transfer Enhancement (나노유체의 열전도율 측정과 열전달 향상)

  • Lee, Shin-Pyo;Choi, Cheol;Oh, Je-Myung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.147-150
    • /
    • 2006
  • A new class of heat transfer fluid with higher thermal conductivity, called nanofluids has been developed by Dr. S. Choi about decade ago. Many exciting experimental and theoretical results have been reported worldwide to predict the thermal conductivity enhancement of nanofluids, however, they sometimes show excessive large discrepancies between each other. This kind of disagreements in thermal conductivity data is partly ascribable to the accuracy of the measuring apparatus, that is, mostly used THM(transient hot-wire method). New thermal conductivity measuring method whose principle is different from that of conventional THM is proposed in this article and measurements and uncertainty analysis were made for the three nanofluid samples with different particle concentration of pure, 2% and 4% of AlN nanofluids.

  • PDF

Development of Experimental Apparatus For Measuring Thermal Conductivity by Transient Probe Method (과도탐침법에 의한 열전도계수 측정장치 개발)

  • 배신철;김명윤
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.59-67
    • /
    • 1997
  • An experimental apparatus was developed for the rapid determination of thermal conductivity by transient probe method. The theoretical basis for transient probe method has been investigated. The mathematical model for this method is the Carslaw and Jaeger model which is used perfect line source theory. The small needle probe which is equipped with thermocouple and heating element is constructed. A software that performs data analysis and acquisition is programmed. The influence of the power dissipated per unit length of the probe has been assessed for glycerin. The result showed no significant correlation between thermal conductivity and power input. Determination made with this experimental apparatus were found to agree well with the recommended thermal conductivity data.

  • PDF

Performance Analysis of Ground Thermal Conductivity by Ground Heat Exchanger (지중열교환기의 지중열전도도 성능 분석)

  • Kim, Young-Jun;Choi, Jae-Sang;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.161-166
    • /
    • 2005
  • The objectives of this paper are to estimate the ground thermal conductivity by ground heat exchangers in two different places - Chooncheon and Wonjoo, and to analyze the effect of ground thermal conductivity on the ground thermal diffusivity and the size of the ground heat exchanger. In Chooncheon area, a single-U type HDPE pipe (25mm diameter) with borehole diameter of 150mm, length of 150m is installed. In Wonjoo area, a single-U type HDPE pipe (40mm diameter) with borehole diameter 150mm, length of 200m is installed. It is found that the ground thermal conductivities are estimated as 2.69 $W/m^{\circ}C$ and 2.99 $W/m^{\circ}C$ in Chooncheon and Wonjoo, respectively. It is also found that the ground heat exchanger size is reduced by 8.6% with 25% increase of ground thermal conductivity, and increase by 11.8% with 25% decrease of ground thermal conductivity.

  • PDF