• Title/Summary/Keyword: Conductive-Radiative

Search Result 43, Processing Time 0.023 seconds

THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (정지위성 해색 촬영기의 열모델링 기술)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Byoung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

A Study on the Flame Stability of Porous Ceramic Burner (다공성세라믹버너의 화염안정화에 관한 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.12-18
    • /
    • 2016
  • Typical boiler system consists of combustion chamber and heat exchanger in one housing, therefore the size of boiler system is large and the heat exchanging efficiency becomes low. At these boiler systems, because the combustible mixture fires as free flame in the combustion chamber, consequently the combusted hot gas heats the heat exchanger only as conductive and convective heat transfer. The present Porous Ceramic Burner concept is that combustion process is occurred at the gaps of the porous ceramic materials, and the heat exchanger is placed in the same porous materials. Therefore we can reduce the boiler size, and we can also use radiative heat transfer from ceramic material with conductive and convective heat transfer from combusted gas throwing the porous materials. The purpose of this study is to search the flame stability ranges at different fuel flow rate and excess air ratio burning in the $Al_2O_3$ ceramic balls. We found out the stable excess air ratio range on given combustion intensity. And we can get clean porous ceramic combustion results compared with free flame.

Prediction of Temperature Distribution for Heat Treatment of 2.5% C-15% Cr Sleeve Casting Roll for Coke Biquette (2.5% C-15% Cr 성형탄 슬리이브 캐스팅로울의 열처리에 대한 온도 분포예측)

  • 하만영;윤영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.408-418
    • /
    • 1986
  • 본 연구에서는 표면은 단단하고 내면은 강인한 조직을 얻기위하여 대형 성형 탄 로울에 대하여 노에서의 급속가열 및 대기 상태에서의 자연냉각의 열처리가 수행 되어진다. 급속가열 및 냉각시 성형탄 로울 내부의 온도 분포 예측을 위하여 대류 및 복사 열전달 경계조건을 가지는 1차원 비정상 열전도 방정식이 유한 차분법을 사 용하여 해석되어졌다. 여기서 급속가열시 연소가스로 부터 기체복사에 의하여 성 형탄 로울의 바깥표면을 통하여 흡수되는 열량은

ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF A GEOSTATIONARY SATELLITE (정지궤도위성의 해양관측센서 임무 궤도 열해석)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.135-141
    • /
    • 2009
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. According to the results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature is found slightly out its specification, therefore further detailed analyses should be continued on this element.

  • PDF

PRELIMINARY ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF COMS (통신해양기상위성 해양탑재체 정지궤도 예비 열해석)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Han, Cho-Young
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. The results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature and shutter wheel motor gradient are found slightly out their specification, therefore further detailed analyses should be continued on these elements.

An Experimental Investigation on Flame Spreading Over Liquid Fuel Surface (액체연료표면에서의 화염 확장에 관한 연구)

  • 김한석;백승욱;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.271-276
    • /
    • 1989
  • Flame spreading over a hydrocarbon fuel surface has been investigated for liquid fuels such as kerosene and diesel, using thermocouple. Without forced convection, it was clearly found that the flame spreading was mainly controlled by the liquid fuel surface flow. Furthermore, the radiative heat transfer was dominant over a conductive heat transfer in kerosene. But in diesel the latter was found to be more influential than the former, when the direction of windflow was the same as that of flame spreading. The oscillation period and amplitude of the flame spreading velocity increase if the windflow is blowing in the direction of the flame spreading velocity, and decrease if the direction of windflow is blowing against the flame spreading direction.

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

Analysis of the Combined Surface Radiation-Natural Convection in a Rectagular Enclosure with a Selectively Transparent Wall (선택적 투과성면을 가진 직사각형 밀폐공간에서의 표면복사 및 자연대류해석)

  • Park D. S.;Lee T. S.;Lee J. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.194-203
    • /
    • 1987
  • A numerical study has been conducted on the combined radiation-natural convection heat transfer characteristics in a square cavity with a selectively transparent wall. The fluid in the cavity is assumed to be transparent to the thermal radiation. The effect of the wall emissivity is mainly considered in view of the temperature and flow fields. The comparison of the radiative heat flux and conductive heat flux variations along the isothermal wall is presented as well. The results show that the Nusselt number distribution is fairly uniform due to the com-pensative interaction of the radiation and convection heat transfer.

  • PDF

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

Effects of Current Spreading in GaN-based Light-emitting Diodes Using ITO Spreading Pad

  • Kim, Jang Hyun;Kim, Garam;Park, Euyhwan;Kang, Dong Hoon;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • In conventional LEDs, a mesa-structure is usually used and it causes the current to be overcrowded in a specific region. We propose a novel structure of GaN-based LED to overcome this problem. In order to distribute the current in an active region, a spreading pad is inserted at the p-type region in the GaN based LED device. The inserted spreading pad helps the current flow because it is more conductive than the p-type GaN layer. By performing electrical and optical simulations, the effects of the spreading pad insertion are confirmed. The results of electrical simulation show that the current spreads more uniformly and more radiative recombination is produced as well. Moreover, from the optical simulation, it is revealed that the ITO is less absorptive material than p-GaN if the condition of specific wavelength sources is satisfied. Considering all of the results, we can conclude that the luminescent power is enhanced by the spreading pad.