• 제목/요약/키워드: Conductive polymers

검색결과 92건 처리시간 0.023초

탄소나노튜브를 이용한 전도성 페이스트 (Carbon Nanotube Incoporated Conductive Pastes)

  • 오영석;서대우;김영진;최재붕;백승현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1908-1912
    • /
    • 2008
  • Conductive polymers, prepared by mixing electrically conductive fillers with a suitable polymeric formulation, are widely used in applications such as interconnecting materials for high density electronic packaging. However, resins of conductive pastes used as binders and vehicles are generally nonconductive, so that they may prevent the electrical contact between conductive fillers and reduce electron transmission. In this study, we improved conductivity of silver paste by the incorporation of cabon nanotubes. It is important to achieve homogeneous dispersion of CNTs to act as reinforcements efficiently in matrix. We carried out acid treatment on nanotubes for their homogeneous dispersion in silver/conducting polymer matrix. The dispersion states of nanotubes were characterized by raman spectra and filed emission scanning electron microscope. The electrical resistivity of CNTs incorporated silver paste was also measured by 4-point probe method.

  • PDF

전도성 고분자를 이용한 전자파 차폐효과 (The Electromagnetic Shielding Effectiveness Using Conducting Polymers)

  • 하남규;김종은;서광석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.306-309
    • /
    • 2000
  • The conductive polymers, polyaniline (PANI) emeraldine base and 3, 4-polyethylene dioxythiophene (PEDOT) were synthesized and coated on the PET film primer-dealt with acryl type to find out the electromagnetic shielding effectiveness. When conductive polymer such as PANI and PEDOT is used, if the thickness of coating increases then the electromagnetic shielding effectiveness increases, too, but the visible light transmittance decreases. For PANI, when its conductivity increased, its electromagnetic shielding effectiveness increased, too. For PANI, if the surface resistance is about 140 $\Omega$/$\square$, the shielding effectiveness is about 11 dB in the far field, and about 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance is about 200 $\Omega$/$\square$, the shielding effectiveness is about 3 dB.

  • PDF

스마트 의류용 전도성 직물의 제조 및 특성 분석 (Fabrication of active cooling e-Textiles)

  • 이승아;이창환;김기태;김주용
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.82-86
    • /
    • 2008
  • Cooling function is definitely one of the most desirable attribute of clothing. In spite of the recent progress on phase changing material(PCM) research, the final products with sufficient amount of cooling capability have not yet to be developed in market. A new concept of cooling fabrics has been proposed by applying "Peltier effect" to textile materials. It occurs whenever electrical current flows through two dissimilar conductors; depending on the direction of current flow, the junction of the two conductors is absorbed or released heat. This effect has been tested on P-type and N-type conducting polymers. A P-type conductive polypyrrole coated fabric was synthesized by in-situ polymerization on plain weave PET to make conductive fabrics. And an N-type electrically conductive material was synthesized by treatment of MWNT and polyethyleneimine(PEI). A noticeable amount of temperature difference has been found on the fabrics.

Recent Advances in Electrochemical Studies of π-Conjugated Polymers

  • Park, Su-Moon;Lee, Hyo-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.697-706
    • /
    • 2005
  • We review the evolution of electrochemical studies of conducting polymers into the current state-of-the-art based primarily on our work. While conventional electrochemical experiments sufficed for the needs in the phase of studies of both electrochemical synthesis and characterization of conducting polymers, developments of various new experimental techniques have led to their introduction to this field for more refined information. As a result, the conventional electrochemical, spectroelectrochemical, electrochemical quartz crystal microbalance, impedance, and morphological as well as electrical characterization studies all made important contributions to a better understanding of the polymerization mechanisms and the conductive properties of these classes of polymers. From this review, we hereby expect that the electrochemical techniques will continue to play important roles in bringing this field to the practical applications such as nanoscale electronic devices.

Characterization of Conductive Polypyrrole Coated Wool Yarns

  • Kaynak, Akif;Wang, Kijing;Hurren, Chris;Wang, Xungai
    • Fibers and Polymers
    • /
    • 제3권1호
    • /
    • pp.24-30
    • /
    • 2002
  • Wool yams were coated with conducting Polypyrrole by chemical synthesis methods. Polymerization of pyrrole was caned out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical Properties of the yam upon coating with conductive polypyrrole are Presented. Coating the wool yams with conductive Polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive Polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yin. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yam.

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Electrical and Physical Evaluation of Processable Conductive PANI/PI Blends

  • Han, Moon-gyu;Im, Seung-soon
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.219-222
    • /
    • 1998
  • Polyaniline (PANI) has emerged as one of the most promising conducting polymers of the many types of conducting polymers in that it is soluble and therefore processable in the conducting form, and it is both environmentally and thermally stable together with high conductivity when it is doped by functionalized protonic acids like camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA). (omitted)

  • PDF