• 제목/요약/키워드: Conductive ink

검색결과 97건 처리시간 0.035초

RFID용 전도성 잉크에 적합한 도공층 설계 (제1보) -도공액 성분에 따른 전도성잉크의 표면저항의 변화- (Design of the Coated Layer Suitable with Conductive Ink for RFID(II) - Effect of coating color components on the surface resistance of conductivity ink -)

  • 정해성;김창근;이용규
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.17-22
    • /
    • 2011
  • The conventional coated paper has many functional problems for printed RFID tag. This study was carried out in order to evaluate the effect of coating color components on conductivity of printed coated paper. It has been well known that the efficiency of printed RFID tag is influenced by surface properties of substrate. The required properties for suitable substrate of printed RFID tag are high smoothness and waterproof property. In this study high grammage base paper surface sized with PVA was used. Coated paper was manufactured with five different formulations. Types of coating pigments and dosage of latex were varied. It was obtained high smoothness and also less binder demand with clay than GCC. On the other hand, suitable surface resistance and smoothness of coated paper for RFID tag was obtained with 20% of latex. Besides it shows the possibility of using coated paper for printed RFID tag.

A Study on a Healthcare System Using Smart Clothes

  • Lim, Chae Young;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.372-377
    • /
    • 2014
  • Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.

Physical Properties of Indium Reduced Materials for Transparent Conductive Electrodes

  • Kwak, Seung-Hoon;Kwak, Min-Gi;Hong, Sung-Jei;Ju, Byeong-Kwon;Han, Jeong In
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.14-17
    • /
    • 2014
  • In this paper, indium reduced materials for transparent conductive electrodes (TCE) were fabricated and their physical properties were evaluated. Two of materials, indium-zinc-tin oxide (IZTO) and aluminum (Al) were selected as TCE materials. In case of IZTO nanoparticles, composition ratios of In, Zn and Sn is 8:1:1 were synthesized. Size of the synthesized IZTO nanoparticles were less than 10 nm, and specific surface areas were about $90m^2/g$ indicating particle sizes are very fine. Also, the IZTO nanoparticles were well crystallized with (222) preferred orientation despite it was synthesized at the lowered temperature of $300^{\circ}C$. Composition ratios of In, Zn and Sn were very uniform in accordance with those as designed. Meanwhile, Al was deposited onto glass by sputtering in a vacuum chamber for mesh architecture. The Al was well deposited onto the glass, and no pore was observed from the Al surface. The sheet resistance of Al on glass was about $0.3{\Omega}/{\square}$ with small deviation of $0.025{\Omega}/{\square}$, and adhesion was good on the glass substrate since no pelt-off part of Al was observed by tape test. If the Al mesh is combined with ink coated layer which is consistent of IZTO nanoparticles, it is expected that the good and reliable metal mesh architecture for TCE will be formed.

액체누설 감지용 테이프형 필름센서 (Tape-Type Liquid Leakage Film Sensor)

  • 유동근;김경신;유홍근;한국희;김동준;김정현;한상호;조광섭
    • 한국진공학회지
    • /
    • 제20권2호
    • /
    • pp.146-154
    • /
    • 2011
  • 접착테이프 형태의 액체누설 감지 필름 센서와 이를 이용하고 경보 장치를 포함한 감지 시스템을 개발하였다. 액체누설 감지 필름형 테이프 센서는 베이스 필름층, 전도성 라인층, 보호 필름층으로 구성되며, 테이프의 두께 $300{\sim}500{\mu}m$, 폭 3.55 cm, 그리고 단위 테이프의 길이는 200 m이다. 전도성 라인층의 필름에는 3개의 전도선과 1개의 저항선이 있다. 이들은 도전성 은나노 잉크를 전자인쇄방식으로 설치한다. 이들 저항선과 전도선 사이에 액체가 누설되어 전기적으로 상호 통전되면, 두 선사이의 저항변화를 전압의 변화로 계측하여 누설 위치를 감지한다. 물을 포함한 전도성 액체에 대한 누설 위치 감지에서 길이 200 m에서 오차 범위는 ${\pm}1m$ 이내이다.

미세표면구조가 전자인쇄에 미치는 영향 (Effect of Micro Surface Structure on Printed Electronics)

  • 김승환;강현욱;이경헌;성현진
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.20-25
    • /
    • 2010
  • The effect of micro surface structure on printing for printed electronics has been studied experimentally. The photolithography MEMS fabricationwass used to make a SU-8 molder which has micro structures on the surface, and the PDMS micro structure was fabricated by the PDMS molding method. In the aspect of printed electronics, we used silver paste conductive ink. We measured the surface energy variation on pillar microstructure. The microstructure was used to real printing experiment by a screen printing. We printed 1cm micro lines which have $30{\sim}250{\mu}m$ width, and checked the conductivity to sort out opened line pattern. Printability was defined by success probability of printed patterns and we found that the present microstructures improve the printability significantly.

Fabricating Using Nano-particulates with Direct Write Technology

  • Sears, James;Colvin, Jacob;Carter, Michael
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.372-373
    • /
    • 2006
  • Modern business trends call for miniaturization of electronic systems. One of the major impedances in this miniaturization is the conductive and inductive components in chips and circuit boards. Direct Write Technology can write these soft magnetic materials, thus allowing for further miniaturization of inductor devices. Another obstacle in electronics fabrication is the size limitations of thick screen-printing and the material limitations in ink jet printing. Direct Write Technologies address both of these limitations by providing feature sizes less than 20 microns with a wide range of materials possibilities. A discussion of the application of these nano-particulate materials by Direct Write Technologies will be presented.

  • PDF

잉크젯 프린팅에 의한 단일벽 탄소나노튜브의 패터닝 (Patterning of Single-wall Carbon Nanotube using Ink-jet Printing)

  • 송진원;윤여환;한창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.236-237
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as 34${\mu}m$. In thisrepeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about $\pm$5% deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성 (Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes)

  • 현재영;최정미;박윤선;강지훈;석중현
    • 한국진공학회지
    • /
    • 제22권3호
    • /
    • pp.156-161
    • /
    • 2013
  • 연속적인 1차원의 나노섬유를 제작하는데 빠르고 효과적인 방법인 전기방사법을 이용하여 Ag 나노섬유로 이루어진 투명전극을 제작하고 그 특성을 측정하였다. 전기방사를 통해 제조된 Ag 나노섬유는 큰 종횡비를 갖게 되며 열처리를 통해 생성된 섬유사이의 fused junction이 접촉저항을 낮추어 전기적 특성을 향상시킨다. Ag/고분자 용액을 졸-겔 방법을 이용하여 제조한 후 glass 기판위에 방사시켜 Ag/고분자 나노섬유 구조체를 제작하고 $200{\sim}500^{\circ}C$, 2시간 열처리하여 고분자가 일정부분 제거되고 전도성이 향상된 Ag 나노섬유 투명전극을 제조하였다. Ag 나노섬유의 모폴로지를 FE-SEM을 통해 확인하였고 Ag 나노섬유 투명전극의 투과도와 면저항을 UV-vis-NIR spectroscopy와 I-V특성 측정장치를 사용하여 측정하였다. 투과도 83%에서 면저항 $250{\Omega}/sq$의 투명전극을 제작하였으며 전도성필름에 적합한 수준이다. Ag 나노섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 차세대 유연 디스플레이에 적용 가능성을 보여준다.

솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스 (Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization)

  • 강성구;이창완;정윤장;김창균;김성탁;김동환;이영국
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF