• Title/Summary/Keyword: Conductive induction

Search Result 32, Processing Time 0.018 seconds

Characteristic Analysis of Induction Phenomena in the Nearby Mesh Structure Conductive Part of Large Capacity Wireless Power Transmission System (대용량 무선전력전송 환경 인근 메쉬구조 도전부 유도현상 특성 분석)

  • Chae, Dong-Ju;Yi, Geon-Ho;Lim, Hyun-Sung;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.207-214
    • /
    • 2019
  • A large-capacity wireless power system is a technology that transmits electric power of kW or more in a noncontact type. Electric cars, electric buses, and electric railways. In order to increase the power transmission efficiency, a resonance method using a frequency of kHz is applied and the efficiency is 80 ~ 90%. In this case, the loss is 10 ~ 20% other than efficiency, and corresponds to several hundreds of W to several kW in kW class wireless power transmission. 35 kW wireless feed system environment, and induced current in the nearby conductive part was measured. As a result of analysis, it was confirmed that induction phenomenon is higher as the loop configuration of the conductive part per area is dense. The increase of the induced current in the mesh loop is characterized by the density of the nearby conductive part having a permeability per unit area. The concentration of the magnetic field by the permeability is increased and the induction phenomenon causing the induction current is increased. It was confirmed that induction phenomenon increases by about 2.7 times when 9 times dense structure is formed.

Heating Properties of Conductive Resistor by Induction Heating (유도가열에 의한 도전성 저항체의 승온특성)

  • Han, Chang-Woo;Ahn, Jae-Cheol;Oh, Sang-Gyun;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.39-40
    • /
    • 2011
  • The purpose of this study is to select a conductive resistor as high energy efficiency through analysis of the heating properties by induction heating. The result of this study, the heating properties is capable of weaken cementitious joint in 10~30 seconds when using the conductive resistor with wire mesh or punching metal. Although the steel is higher temperature than SUS304, SUS304's heating properties are more uniform.

  • PDF

A investigation on the responses of conductive structures of Korean Peninsula using EM modeling

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2004.02a
    • /
    • pp.52-57
    • /
    • 2004
  • Korean Peninsula located between Japan and China where earthquakes frequently occur, have little geophysical observation despite its tectonic importance. This study suggests the inland conductive structures inferred from GDS data measured in Korean Peninsula and try to interpret induction arrows quantitatively with the aid of 2- and 3-D geomagnetic induction modeling. Ogcheon Belt (OCB) and Imjin River Belt (IRB) are regarded as main conductive structures in Korea Peninsula, the induction arrows for the period of 60 minutes show very weak anomaly due to sea effect, which is supported by the results of 3-modeling also. However, for the period of 10 minutes, induction arrows at YIN and ICHN show anomalous patterns considered as the effect of IRB in spite of sea effect. The results of 2-D modeling which simplify geological situations provide overall information on IRB

  • PDF

Heating Properties and Pore structure of Cementitious Joint by Induction Heating (시멘트계 접합부의 유도가열에 의한 승온특성 및 공극구조)

  • Kang, Dong-Woo;Ahn, Jae-Cheol;Kim, Jung-Kil;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.3-4
    • /
    • 2011
  • The purpose of this study is to suggest basic data for development optimal disassembly manufacturing system during analysis pore structure and heating properties of cementitious joint using conductive resister by induction heating. From the results, we knew cementitious joint is weak easily by heating of conductive resister, such as wire mesh, punching metal, and steel fiber, from induction heating.

  • PDF

Interpretation on GDS(Geomagnetic Depth Sounding) Data in and around the Korean Peninsula through the 3-D Sea Effect Modeling

  • Yang, Jun-mo;Kwon, Byung-Doo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.159-169
    • /
    • 2006
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine conductivity anomalies in and around the Korean Peninsula. In this study, new GDS data acquired at the five sites in south-eastern area of the peninsula were incorporated into the previous GDS data. In order to quantitatively interpret observed induction arrows, the 3-D MT modeling considering the surrounding seas of the Korean Peninsula has been performed to evaluate sea effect at each GDS site. The modeling results revealed that the observed real induction arrows were not explained by solely sea effects, consequently two conductive structures that are responsible for the discrepancies between observed and calculated induction arrows were proposed. The first one is the Imjingang Belt, which is thought as an extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at the site YIN and ICHN. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling produced in back-basin region. The effects of the HCL are seen at the site KZU, KMT101, and KMT 107 in the south-eastern region of the Korean Peninsula.

  • PDF

An Interpretive Analysis of Magnetotelluric Response for a Three-dimensional Body Using FDM (FDM을 이용한 MT 탐사의 3차원 모형 반응 연구)

  • Han Nuree;Lee Seong Kon;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.136-147
    • /
    • 2004
  • In this study, the characteristics of magnetotelluric (MT) responses due to a three-dimensional (3-D) body are analyzed with 3-D numerical modeling. The first model for the analysis consists of a single isolated conductive body embedded in a resistive homogeneous half-space. The second model has an additional conductive overburden while the other conditions remain the same as the first one. The analysis of apparent resistivities shows well that the 3-D effects are dominant over some frequency range for the first model. Two mechanisms, current channeling and induction, for secondary electric fields due to the conductive body are analyzed at various frequencies: at high frequencies induction is more dominant than channeling, while at low frequencies channeling is more dominant than induction. Tippers have a strong relation to the position of anomalous body and the real and imaginary parts of induction vector also indicate the position of anomalous body. off-line conductive anomaly sometimes causes severe problem in 2-D interpretation. In such case, induction vector analysis can give information on the existence and location of the anomalous body. Each parameter of the second model shows similar responses as those of the first model. The only difference is that the magnitude of all parameters is decreased and that the domain showing the 3-D effects becomes narrower. As shown in this study, the analysis of 3-D effects provides a useful and effective means to understand the 3-D subsurface structure and to interpret MT survey data.

Separation of High Purity and High Carbon Fly Ash by Electrostatic Method (정전선별법에 의한 고순도 석탄회와 고탄소 석탄회의 분리)

  • 한오형;깅현호
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2003
  • In 2001, Korea produced a total of 4.91 million metric tons of fly ash, approximately 63.3% of which was recycled. Almost all of the recycled fly ash are used in concrete mixtures and cement industry. Therefore, in order to develop a new usage to increase the utilization of the fly ash, conductive induction was used in this research rather than triboelectrostatic. By applying conductive induction, we could verify the possibility of obtaining high purity fly ash below 1%LOI and high carbon fly ash over 70%LOI from raw fly ash. In this test, the potential difference between the two electrodes was conducted by changing the range of 8 to 16 kV.

The Effect of Crystal and Non-Crystal Structures on Shielding Material Behaviour Under A.C. Field Excitations

  • Rahman, Nazaruddin Abd;Mahadi, Wan Nor Liza
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • Shielding effects in conductive and magnetic materials were investigated as a function of properties, thickness and diameter. In this work, evaluations on passive conductive and magnetic shield specimens were achieved through experimentation set-up using 50 Hz single and three phase induction field sources. Analysis on material microstructure properties and characteristics of shielding specimens were performed with the use of vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). An induction field at $136{\mu}T$ of single phase system and $50{\mu}T$ of three phase systems were observed to the shield specimens with the thickness ranged of 0.2 mm to 0.4 mm. It is observed that shield specimen efficiency becomes inversely proportionate to the increment of induction fields. The decrease was attributed to the surface structure texture which relates to the crystallization and non-crystallization geometrical effects.

Interpretation on GDS(Geomagnetic Depth Sounding) data in and around Korean peninsula using 3-D MT modeling (3차원 MT 모델링을 통한 한반도 및 주변의 GDS(Geomagnetic Depth Sounding) 자료 해석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Ryu, Yong-Gyu;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.124-131
    • /
    • 2005
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.

  • PDF

A Spatial Stability of the Conductive Rod Conveyed by Double Electrodynamic Wheels (이중 동전기 휠에 의해 반송되는 도전성 환봉의 공간 안정성)

  • Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.873-878
    • /
    • 2012
  • Putting a conductive rod between rotating axial electrodynamic wheels composed of repetitive permanent magnets, three-axial magnetic forces generate on the conductive rod. It is possible to levitate and transfer the rod on space with the forces. However, the forces vary in direction and magnitude for a position of the rod between the electrodynamic wheels. Thus, the position influences the stability of the rod also. To guarantee the stability of a levitated object, the force acting on the object should have negative stiffness like a spring. So, we analyze the stable operating range of the conductive rod levitated by the axial wheels with the commercial finite element tool in this paper. Specially, as the pole number and the radial width of permanent magnets has much influence on the generated force and thereby the stable region, their sensitivities are analyzed also. The analytic result is compared with experimental result.