• Title/Summary/Keyword: Conductive fabric sensor

Search Result 21, Processing Time 0.019 seconds

슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가 (Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method)

  • 이병우;이충근;조하경;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.

슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유 센서의 여기 주파수별 특성 평가 (Excitation Frequency Characteristics of a Conductive Fabric Sensor Using the Bio-impedance for Estimating Knee Joint Movements)

  • 이병우;이충근;김진권;정완진;이명호
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1427-1433
    • /
    • 2011
  • This study describes a conductive fabric sensor and determines an optimum excitation frequency of the sensor to evaluate knee joint movements. Subjects were composed of 15 males (age: $30.7{\pm}5.3$) with no known problems with their knee joints. The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The sensors were attached to 1 for 3 spot from a hip joint and to 3 for 4 spot from a knee joint which are the optimum conductive fabric sensor configuration to evaluate knee joint movements. As a result, the optimum excitation frequency for evaluating knee joint movements using conductive fabric sensors was 25 kHz. Average and standard deviation of bio-impedance changes from 15 subjects were $92.1{\pm}137.2{\Omega}$ at 25 kHz. The difference of bio-impedance changes between 25 kHz and 50 kHz was statistically significant (p<0.05) and the difference of bio-impedance changes between 25 kHz and 100 kHz was also statistically significant (p<0.001). These results showed that conductive fabric sensors are more sensitive to measure bio-impedance for evaluating knee joint movements as an excitation frequency decreases.

네오프렌(Neoprene)소재로 구성된 골프자세 훈련용 웨어러블 디바이스의 실용적 기능에 관한 연구: Flex Sensor 및 아두이노를 장착한 보조밴드를 중심으로 (A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor)

  • 이은아;김종준
    • 패션비즈니스
    • /
    • 제18권4호
    • /
    • pp.1-14
    • /
    • 2014
  • Currently smart textile market is rapidly expanding and the demand is increasing integration of an electronic fiber circuit. The garments are an attractive platform for wearable device. This is one of the integration techniques, which consists of is the selective introduction of conductive yarns into the fabric through knitting, weaving or embroidering. The aim of this work is to develop a golf bend driven prototype design for an attachable Arduino that can be used to assess elbow motion. The process begins with the development of a wearable device technique that uses conductive yarn and flex sensor for measurement of elbow bending movements. Also this paper describes and discusses resistance value of zigzag embroidery of the conductive yarns on the tensile properties of the fabrics. Furthermore, by forming a circuit using an Arduino and flex sensor the prototype was created with an assistance band for golf posture training. This study provides valuable information to those interested in the future directions of the smart fashion industry.

전기임피던스 단층촬영법을 이용한 외란위치 계측오차 (Measurement errors of the EIT systems using a phantom and conductive yarns)

  • 박지수;구상모;김충현
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1430-1435
    • /
    • 2016
  • Electrical impedance tomography (EIT) has been applied to measure the location of external disturbance using a phantom and conductive yarns. According to the test results, the addition of carbon nanotube particles into the phantom does not show remarkable improvement in location errors. On the other hand combined fabric, conductive yarns with fabric, and non-woven fabric, were added to evaluate its performance as a fabric sensor. The combined fabric resulted in a decrease of 21.5% in the circumferential location error and a decrease of 50% in the radial location error, compared to those of the yarns. Additionally, it was revealed that the measurement error is almost linearly proportional to the conductivity of the phantom liquid and resistance of the conductive yarns. The combined fabric can be a promising material for fabric sensors in sports utilities and medical devices.

Silver nanowire-containing wearable thermogenic smart textiles with washing stability

  • Dhanawansha, Kosala B.;Senadeera, Rohan;Gunathilake, Samodha S.;Dassanayake, Buddhika S.
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.123-131
    • /
    • 2020
  • Conventional fabrics that have modified in to conductive fabrics using conductive nanomaterials have novel applications in different fields. These of fabrics can be used as heat generators with the help of the Joule heating mechanism, which is applicable in thermal therapy and to maintain the warmth in cold weather conditions in a wearable manner. A modified fabric can also be used as a sensor for body temperature measurements using the variation of resistance with respect to the body temperature deviations. In this study, polyol synthesized silver nanowires (Ag NWs) are incorporated to commercially available cotton fabrics by using drop casting method to modify the fabric as a thermogenic temperature sensor. The variation of sheet resistance of the fabrics with respect to the incorporated mass of Ag NWs was measured by four probe technique while the bulk resistance variation with respect to the temperature was measured using a standard ohm meter. Heat generation profiles of the fabrics were investigated using thermo graphic camera. Electrically conductive fabrics, fabricated by incorporating 30 mg of Ag NWs in 25 ㎠ area of cotton fabric can be heated up to a maximum steady state temperature of 45℃, using a commercially available 9 V battery.

Sewing-enabled electric button for smart fabric

  • Lee, Kang-Ho;Lee, Dongkyu;Lee, Yong-Goo;Kwon, Ohwon
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.67-70
    • /
    • 2021
  • A new button-shaped electrical device was developed for a smart fabric. This electric button can be sewn anywhere on the garment, similar to a traditional button fastener. t not only performs a decorative function but also makes the fabric suitable for use in Internet of Things (IoT) applications. It has metallic through-holes such that it can be fastened onto a fabric by conductive sewing threads. When threaded through metallic holes, the button can communicate with the external device by transmitting and receiving data. In addition, it adds specific functions by stacking a detachable application layer on the base layer. It is robust to frequent washing, and thus has excellent repeatability for use as an IoT device. The feasibility of the electric button was successfully demonstrated by its ability to identify the physical activities of walking and running, monitoring ambient temperature, and turning on LED lights.

Implementation of the Wearable Sensor Glove Using EDA Sensor and Conducting Fabric

  • Lee, Young-Bum;Lee, Byung-Woo;Choo, Young-Min;Kim, Jin-Kwon;Jung, Wan-Jin;Kang, Dae-Hoon;Lee, Myoung-Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.280-286
    • /
    • 2007
  • The wearable sensor glove was developed using EDA sensors and conducting fabric. EDA(Electro-dermal Activity) signal is an electric response of human skin. There are SIL(Skin Impedance Level) and SIR(Skin Impedance Response) in EDA. SIL consists mostly of a DC component while SIR consists of an AC component. The relationship between drowsiness and the EDA signal is utilized. EDA sensors were made using a conducting fabric instead of AgCl electrodes, for a more suitable, more wearable device. The EDA signal acquisition module was made by connecting the EDA sensor gloves through conductive fabric lines. Also, the EDA signal acquisition module can be connected to a PC that shows the results of the EDA signal processing analysis and gives proper feedback to the user. This system can be used in various applications to detect drowsiness and prevent accidents from drowsiness for automobile drivers.

Sheath-core 구조 전도사 섬유센서의 Home-Textile 적용을 위한 전기·물리학적 특성연구 (Electrical and Physical Properties of Sheath-core Type Conductive Textile Sensor with Home-Textile)

  • 조광년;정현미
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.145-152
    • /
    • 2014
  • The usage of textile-based sensors has increased due to their many advantages (compared to IT sensors) when applied to body assessment and comfort. Textile-based sensors have different detecting factors such as pressure, voltage, current and capacitance to investigate the characteristics. In this study, textile-based sensor fabrics with sheath-core type conductive yarns were produced and the relationship between capacitance changes and applied load was investigated. The physical and electric properties of textile-based sensor fabrics were also investigated under various laminating conditions. A textile based pressure sensor that uses a sheath-core conductive yarn to ensure the stability of the pressure sensor in the textile-based sensor (the physical structure of the reaction characteristic of the capacitance) is important for the stability of the initial value of the initial capacitance value outside the characteristic of the textile structural environment. In addition, a textile based sensor is displaced relative to the initial value of the capacitance change according to pressure changes in the capacitance value of the sensor due to the fineness of the high risk of noise generation. Changing the physical structure of the fabric through the sensor characteristic of the pressure sensor via the noise generating element of laminating (temperature, humidity, and static electricity) to cut off the voltage output element to improve the data reliability could be secured.

휴대용 심전도 기기와 직물형 전극을 이용한 생체정보 측정용 밀착 의복 개발 (Development of Tight-Fitting Garments with a Portable ECG Monitor to Measure Vital Signs)

  • 정연희;김승환;양영모
    • 한국의류학회지
    • /
    • 제34권1호
    • /
    • pp.112-125
    • /
    • 2010
  • A Holter monitor is used for ECG monitoring of ambulatory daily life in hospital. However, the use of this apparatus causes skin allergies and discomfort in patients because of the attachment gel and tapes used to attach disposable electrodes to the skin. In this study, the development of tight-fitting clothing connected to a portable Holter monitor was proposed. In addition, the use of conductive fabrics as electrodes was proposed; this will enable the use of garments in u-health care for measuring ECG signals. The male subjects were university students in the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using seven Likert scales. A Likert type scale was used for the evaluation and a 7 point score indicates that it provided the best fit as a tight-fitting upper clothing. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 4 locations (the conductive fabric electrode) As results, a male basic sloper for upper clothing was developed and that pattern was manipulated to the tight fit pattern by considering the reduction rate of the percentage stretch in the fabric. The developed tight-fitting garment was superior in terms of subjective sensation and 6t. The mean pressure of the garment with reduction rates of 40% in width and of 50% in length was 8.45gf/$cm^2$. A conductive fabric electrode was developed by considering the sewing method and the developed electrode was detected well. The ECG data were recorded for 13 hr 19 min 44 sec and the artifacts in the ECG signals were recorded for 9 hr 3 min 46 sec (total time: 22 hr 23 min 23 sec). The artifacts data were obtained during heavy activities.

의수 제어용 동작 인식을 위한 웨어러블 밴드 센서 (Wearable Band Sensor for Posture Recognition towards Prosthetic Control)

  • 이슬아;최영진
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.265-271
    • /
    • 2018
  • The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).