• Title/Summary/Keyword: Conduction heat transfer

Search Result 453, Processing Time 0.023 seconds

Numerical modelling of effective thermal conductivity of hardened cement paste

  • Cheng Liu;Qiang Liu;Jianming Gao;Yunsheng Zhang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.567-576
    • /
    • 2023
  • In this study, a 3D microstructure-based model is established to simulate the effective thermal conductivity of cement paste, covering varying influencing factors associated with microstructure and thermal transfer mechanisms. The virtual cement paste divided into colloidal C-S-H and heterogeneous paste are reconstructed based on its structural attributes. Using the two-level hierarchical cement pastes as inputs, a lattice Boltzmann model for heat conduction is presented to predict the thermal conductivity. The results suggest that due to the Knudsen effect induced by the nanoscale pore, the thermal conductivity of air in C-S-H gel pore is significantly decreased, maximumly accounting for 3.3% thermal conductivity of air at the macroscale. In the cement paste, the thermal conductivities of dried and saturated cement pastes are stable at the curing age larger than 100 h. The high water-to-cement ratio can decrease the thermal conductivity of cement paste.

The Effects of Warm and Cold Stimulations on the Temperature Distribution in the Prostate (냉.온열의 반복 자극이 전립선 내부의 온도 분포에 미치는 영향)

  • 문우석;백병준;박복춘;김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.467-475
    • /
    • 2002
  • Hyperthermia using transrectal thermal probes has been used for a noninvasive treatment of prostate diseases. However it is known that heating the rectal wall at excessively high temperature can lead to destruction of the rectal mucous membrane. and it is difficult to maintain an optimum temperature over the entire prostate. Thus, a more accurate understanding of the heat transfer mechanism between prostate and hyperthermia system is needed Numerical analysis was performed to investigate how the cold/warm stimulations on the prostate surface affect the temperature distribution in the prostate model. The general purpose software "FLUENT" was used for obtaining a finite volume solution to the unsteady conduction equation and to calculate the time-varying temperature in the prostate. Effects of the warm/cold stimulations and the stimulation frequency on the temperature distribution were simulated. and we visualized how hyperthermia affected the inside of the prostate. It was found that the effect of hyperthermia by using a typical heating method is limited due to the low thermal conductivity of the prostate. Consecutive repetitions of warm and cold stimulations were considered to provide the thermal irritations inside a prostate. The effects of temperature difference and duration of warm/cold stimulations were investigated, and basic data for the optimum period and effective patterns of stimulations were obtained. A simplified bioheat equation was also solved to describe effects of the blood flow on the blood-tissue heat transfer. The effect of blood flow was not dominant compared to that of warm/cold stimulations. These results might be used as data for design of prostate treating probe, prostatic therapy and thermal stimulation effects on the prostate.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.

Characteristics of Bio-oil by Pyrolysis with Pig Feces (돈분을 이용한 열분해공정 바이오오일의 특성)

  • Kun, Zhu;Choi, Hong L.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The characteristics of the bio-oil produced by the pyrolysis process with pig feces was investigated in this paper. The continuous auger-type reactor produced bio-oil was maintained at the temperature range of 400 to $600^{\circ}C$, which was higher than a typical that in a conventional pyrolysis system. The pig feces was used as the feedstock. The bio-oil and its compositions were characterized by water analysis, heating values, elemental analysis, bio-oil compounds, by Gas Chromatography/Mass Spectrometry (GC/MS), and functional group by $^1H$ NMR spectroscopy. It was found that the maximum bio-oil yields of 21% w.t. was achieved at $550^{\circ}C$. This result suggested that this auger reactor might be a potential technology for livestock waste treatment to produce bio-oil because it is able to be improved to reach higher efficiency of bio-oil production in further study. The pyrolysis system reported herein had low heat transfer into the feedstock in the auger reactor so that it needs improve the heat conduction rate of the system in further study.

  • PDF

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method (고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구)

  • Seo, Sang Kyu;Hahm, Hee Cheol;Kang, Yoon Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • The thermal response of carbon/phenolic used in a solid rocket nozzle liner was analyzed. In this paper, the numerical analysis of the thermal response of carbon/phenolic consists of (1) the integration equation of the boundary layer to obtain the convective heat transfer coefficient of the combustion gas on the rocket nozzle wall and (2) 1-D finite difference method for heat conduction of carbon/phenolic to calculate the ablation, char, and temperature. The calculated result was compared with the result of a blast-tube-type test motor. It is found that the calculated result shows good agreement with the thermal response of the test motor, except at the vicinity of the throat insert.

Comparative Studies of Thermal Insulation Performance of Life Vests by Numerical Analysis and Experiment (보온 재료에 따른 구명 조끼 별 단열성능의 비교 실험 및 해석)

  • Kim, Sung-Chan;Lee, Kyung-Hoon;Hwang, Se-Yun;Jang, Ho-Sang;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Although the life jacket can provide the buoyance with the drowner, heat loss can make the drowned individual be subject to the hypothermia. In this study, The thermal insulation of two types life jacket including inflatable and foam type were evaluate by both experiments and numerical analysis. To estimate the thermal resistance of the jackets, experiments on the heat flux were conducted by the thermal manikin exposed to cold water. Heat flux loss on the surface of thermal manikin were measured for both foam and inflatable type life jacket. Also, finite element method is applied to a body section in order to understand the level of hypothermia of each life jacket. The segmental of human thigh is represented by a multi-layered section which considers the heat conduction within tissue, bone and fat. As a result, the thermal resistance and hypothermia time of each jackets have been compared based on the finite element analysis. It was found that the insulation ability of suggested life jackets is better than that of conventional type.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.