• Title/Summary/Keyword: Conduction and Switching Losses

Search Result 136, Processing Time 0.027 seconds

The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System (비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구)

  • 김정태;권경안;정윤철;박병욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

Novel soft switching FB DC-DC converter for reducing conduction losses (도전손실 저감을 위한 새로운 소프트 스위칭 FB DC-DC 컨버터)

  • Kim, E.S.;Joe, K.Y.;Kye, M.H.;Kim, Y.H.;Yoon, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.388-391
    • /
    • 1996
  • The conventional high frequency phase-shifted full bridge DC-DC converter has a disadavantage that a circulating current flows through transformer and switching devices during the freewheeling interval Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this study provides a novel circulating current free type high frequency soft switching phase-shifted full bridge DC-DC converter which applies the energy recovery snubber(ERS) attached at the secondary side of transformer. The ERS adopted in this study is consisted of three fast recovery diode($Ds_1$, $Ds_2$, $Ds_3$), two resonant capacitor($Cs_1$, $Cs_2$) and a small resonant inductor [(Lr) : It can be ignored because the transformer leakage inductance(Ll) is able to use in stead of inserting the resonant inductor(Lr)]

  • PDF

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

A Study on the efficiency analysis of CCM boost converter (전류연속모드 승압형 컨버터의 효율 분석에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Lee, Eun-Young;Kwon, Soon-Do;Cho, Kyu-Man;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.920-921
    • /
    • 2008
  • This paper presents the efficiency analysis of CCM(Continuous Current Mode) boost converter. A thorough efficiency analysis of a boost converter taking into account the conduction losses, the diode power loss, the switching losses, the gate-drive loss and the capacitive switching loss, for both continuous conduction mode is presented.

  • PDF

A Simple ZVT PWM Single-Phase Rectifier with Reduced Conduction Loss and Unity Power Factor

  • Kim, In-Dong;Choi, Seong-Hun;Nho, Eui-Cheol;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • This paper proposes a simple unity power factor zero-voltage-transition (ZVT) pulse-width-modulated (PWM) single-phase rectifier, which features reduced switching and conduction losses. The switching loss reduction is achieved by a simple auxiliary commutation circuit, and the conduction loss reduction is achieved by employing a single-stage converter, rather than a typical double-stage converter comprising of a front-end rectifier and a boost rectifier. Furthermore, thanks to good features such as a simple PWM control at constant frequency, low switch stress, low Var rating of commutation circuits, and simple power circuit structure, it is suitable for high power applications. The principles of operation are explained in detail, and a major characteristics analysis and the experimental results of the new converter are also included in this paper.

A study on the ZVT method of high frequency DC-DC converter (ZVT방식 고주파 DC-DC 콘버어터 개발에 관한 연구)

  • Kye, Moo-Ho;Joe, Kee-Yeon;Hong, Sung-Chul;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.345-347
    • /
    • 1994
  • It is importent to have the switching frequency of power supplies increase in order to reduce their size and weight. But according to increasing the switching frequency, there are several defacts - that is switching losses, high voltage/current stresses and conduction losses and so on. That's why soft switching method was proposed. This paper presents the simulation and analysis of the new proposed Full bridge Zero-Voltage-Transition PWM DC-DC converter for developing that unit. This circuit doesen't increase the voltage and current stresses of main MOSFET switches. Voltage type quasi-resorent method is applied and expected high effenciency. Switching frequency is 100KHz and main switches are MOSFET.

  • PDF

A ZCT PWM Boost Converter using parallel MOSFET switch (병렬 MOSFET 스위치를 이용한 ZCT PWM Boost Converter)

  • Kim Tea-Woo;Hur Do-Gil;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.759-762
    • /
    • 2002
  • A ZCT(Zero Current Transition) PWM(Pulse-Width-Modulation) boost converter using parallel MOSFET switch is proposed in this paper. The IGBT(main switch) of the proposed converter is always turned on with zero current switching and turned off with zero current/zero voltage switching. The MOSFET(auxiliary switch) is also operates with soft switching condition. In addtion to, the proposed converter eliminates the reverse recovery current of the freewheeling diode by adding the resonant inductor, Lr, in series with the main switch. Therefore, the turn on/turn off switching losses of switches are minimized and the conduction losses by using IGBT switch are reduced. In addition to, using parallel MOSFET switch overcomes the switching frequency limitation occurred by current tail. As mentioned above, the characteristics are verified through experimental results.

  • PDF

A Study on Efficiency of Active Clamp Type Forward DC-DC Converter (능동 클램프형 포워드 DC-DC 컨버터의 효율에 관한 연구)

  • 안태영
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.351-357
    • /
    • 2004
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for switching power supplies. In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the switching power supply that includes all the parasitic resistances of the circuit components. While the winding losses and core losses are accurately accounted for the magnetic components, the skin and proximity effects are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype active-clamped forward converter with synchronous rectification. An excellent correlation between the experiments and theories are obtained for the input voltages of 36-75 V with 4-6 MOSFETs employed for the synchronous rectification.

An Improved ZVZCS PWM FB DC/DC Converter Using the Modified Clamp Circuit (개선된 Clamp Circuit 적용 ZVZCS FB DC/DC 컨버터)

  • 김은수;조기연;김윤호;이진수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.643-645
    • /
    • 1999
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with the modified energy recovery snubber (ERS) attached at the secondary side of transforemr.

  • PDF

Development of a Topology for the Power Supply with Reduced Conduction Loss and Swithing Stress (도전손실과 스위칭 스트레스 저감한 전원장치 토폴로지의 개발)

  • 라병훈;권순걸;이현우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.245-248
    • /
    • 2001
  • This paper is indicating the problems, which are the conduction loss on the high frequency transformer, the protection of rectification diode as the snubber loss and the stress of switching main devices, as be made high current and high speed in the phase-shift switching full-bridge DC-DC converter is used the power supply’s main circuit of high capacity. To improve those problems, in this paper, it is proposed that is the resonant circuit auxiliary can be reduced conduction losses and stabilized output control. And, it is constructed prototype of the power supply as the result of computer simulations.

  • PDF