• 제목/요약/키워드: Conducting polymer film

검색결과 115건 처리시간 0.031초

고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구 (Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode)

  • 장현석;송기국;김성현
    • 폴리머
    • /
    • 제35권4호
    • /
    • pp.370-374
    • /
    • 2011
  • 폴리아닐린(polyaniline, PANI) 전도성 고분자 용액을 camphorsulfonic acid(CSA)로 도핑하여 제조하였고 FTIR을 이용하여 고분자 중합 및 도핑유무를 확인하였다. 제조된 폴리아닐린을 스핀 코팅하여 유기박막 트랜지스터의 게이트 전극으로 사용하였으며, 열처리 온도변화에 따른 전기 전도도 변화를 4-probe measurement로 확인하였다. 또한 표면 특성을 이해하기 위해 atomic force microscope(AFM)와 optical microscope를 이용하였다. 폴리아닐린 게이트전극을 활용하여 얻은 유기박막 트랜지스터의 소자성능은 최고 이동도가 0.15 $cm^2$/Vs, 전류점멸비가 $2.4{\times}10^6$임을 확인하였다. 고분자 전극의 소지특성을 비교분석하기 위해, 같은 구조의 Au 전극소자를 제작하였다. Au 금속전극소자와 유사한 성능을 보인 폴리아닐렌 게이트 전극 소자는 플렉서블 유기박막 트랜지스터 전극으로 충분히 사용될 수 있다.

Improved Sensitivity of a Glucose Sensor by Encapsulation of Free GOx in Conducting Polymer Micropillar Structure

  • Jung, Shin-Hwan;Lee, Young-Kwan;Son, Yong-Keun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.124-129
    • /
    • 2011
  • A simple process of fabricating micropillar structure and its influence upon enhancing electrochemical biosensor response were studied in this work. Conducting polymer PEDOT was used as a base material in formulating a composite with PVA. Micro porous PC membrane filter was used as a template for the micropillar of the composite on ITO electrode. This structure could provide plenty of encapsulating space for enzyme species. After dosing enzyme solution into this space, Nafion film tent was cast over the pillar structure to complete the micropillar cavity structure. In this way, the encapsulation of enzyme could be accomplished without any chemical modification. The amount of enzyme species was easily controllable by varying the concentration of the dosing solution. The more amount of enzyme is stored in the sensor, the higher the electrochemical response is produced. One more reason for the sensitivity improvement comes from the large surface area of the micropillar structure. Application of 0.7 V produced the best current response under the condition of pH 7.4. This biosensor showed linear response to the glucose in 0.1~1 mM range with the average sensitivity of $14.06{\mu}A/mMcm^2$. Detection limit was 0.01 mM based on S/N = 3.

A Humidity Sensor Using an Electrochemically Prepared Poly(1,5-Diaminonaphthalene)Film

  • 박덕수;심윤보
    • 센서학회지
    • /
    • 제12권6호
    • /
    • pp.241-248
    • /
    • 2003
  • An electrochemical humidity sensor was fabricated with poly(1,5-diaminonaphthalene) film coated on a gap of two splitted gold electrodes, which were made by vacuum deposition. Response currents according to humidity were measured by the potential sweep method and chronoamperometry. The stability of the polymer film was improved by double step chronoamperometry using the applied voltage of ${\pm}0.5$ Vdc. The response time determined by the pulse technique was about ${\sim}50$ msec and the relative standard deviation of current response was within ${\pm}5.0%$. The response current of the film was intrinsically humidity dependent. The film exhibited a non-linear but reproducible response in ordinary range of relative humidity. The linear equations were $I(nA)=0.28{\times}%RH-1.01$ between 10 to 70 %RH and $I(nA)=6.05{\times}%RH-403.21$ between 70 to 90 %RH.

ATR-Infrared Spectroscopic Study of n-Doped Polyacetylene Films

  • Kim, Jin-Yeol;Kim, Jae-Taek;Kwon, Min-Hee;Han, Dong-Kyu;Kwon, Si-Joong
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.5-9
    • /
    • 2007
  • The attenuated total reflection infrared (ATR-IR) spectra of trans-polyacetylene (trans-PA) film doped with sodium (n-doping) were observed in the range of 1900 to $700cm^{-1}$. The observed IR bands were attributed to negatively charged domains created by n-doping electrons. The doping-induced IR bands showed considerable difference from its pristine film. After doping, the out-of-plane CH deformation band of the strong $1010cm^{-1}$ region in the pristine film disappeared while several new bands were observed at 1600 (due to C=C stretching), 1400 (due to in-plane CH bending), 1290 and 1174 (due to CH stretching), and $880cm^{-1}$ (due to CC stretching) regions for Na-doped PA. In particular, a weak band of C=C stretching at $1600cm^{-1}$ was newly obtained for the first time in the present study. The electro conductivity of the doped trans-PA film was $10^2S/cm$ and the origins of doping-induced IR bands are discussed in terms of solitons and polarons.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

폴리머 기판의 표면개질을 통한 ZnO:Al 투명전도막의 전기적 특성 개선 (Electrical property improvement of ZnO:Al transparent conducting oxide thin film as surface treatment of polymer substrate)

  • 팽성환;정기영;박병욱;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1352-1353
    • /
    • 2008
  • In this study, aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET(polyethylen terephthalate) substrate by r.f. magnetron sputtering method. PET substrate was surface-treated in an atmospheric pressure DBD(dielectric barrier discharge) plasma to increase deposition rate and to improve electrical propesties. Morphological changes by DBD plasma were obsered using contact angle measurement. The contact angle of water on PET was reduced from 62$^{\circ}$ to 42$^{\circ}$ by DBD plasma surface treatment. The plasma treatment also increased deposition rate and electrical propesties. The electrical resistivity as low as $4.97{\times}10^{-3}[{\Omega}-cm]$ and the deposition rate of 234[${\AA}$-m/min] were obtained in ZnO:Al film with surface treatment time of 5min, and 20min., respectively.

  • PDF

반응성 직류마그네트론 스퍼터링에 의한 ITO박막 형성에 관한 연구 (The study on formation of ITO by DC reacrive magnetron sputtering)

  • 하홍주;조정수;박정후
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.699-707
    • /
    • 1995
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It has many fields of application such as Solar Cell, Liquid Crystal display, Vidicon on T.V, transparent electrical heater, selective optical filter, and a optical electric device , etc. In the recent papers on several TCO( transparent conducting oxide ) material, the study is mainly focusing on ITO(indium tin oxide) because ITO shows good results on both optical and electrical properties. Nowaday, in the development of LCD(Liquid Crystal display), the low temperature process to reduce the production cost and to deposit ITO on polymer substrate (or low melting substrate) has been demanded. In this study, we prepared indium tin oxide(ITO) by a cylindrical DC magnetron sputtering with Indium-tin (9:1) alloy target instead of indium-tin oxide target. The resistivity of the film deposited in oxygen partial pressure of 5% and substrate temperature of 140.deg. C. is 1.6*10$\^$-4/.ohm..cm with 85% optical transmission in viaible ray.

  • PDF

Poly(vinylidene fluoride-hexafluoropropylene)계 양성자 전도성 겔-전해질의 열적, 전기적 특성 (Thermal and Electrical Properties of Poly(vinylidene fluoride-hexafluoropropylener)-Based Proton Conducting Gel-Electrolytes)

  • 최병구;박상희
    • 폴리머
    • /
    • 제26권2호
    • /
    • pp.179-184
    • /
    • 2002
  • 양성자 전도도가 높으며 균일하고 또 기계적 강도가 우수한 양성자 전도체를 얻기 위하여 poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) 공중합체를 전해질의 지지체로 선택하고, $H_3PO_4$이 포함된 ethylene carbonate (EC)와 $\gamma$-butyrolactone (BL) 및 dimethyl carbonate (DMC)의 유기용매들을 혼합하여 겔-전해질을 제조하였다. 다양한 조성의 겔-전해질에 대하여 열분석과 전도도 측정 실험을 수행하였다. 상온에서 양성자 전도도는 30(PVdF-HFP) + 50EC/DMC + $20H_3PO_4$ 전해질에서 7.3$\times$$10^{-3}Sm^{-1}$/로 가장 높았다. 열분석 결과에서 거의 모든 시료는 대략 $80^{\circ}C$ 정도까지 안정하였으며, 특히 인산은 고분자 사슬과 민감하게 반응하여 고분자와 용매의 혼화성을 증대시키는 것을 확인하였다.

수소이온전도성 고분자 겔전해질을 적용한 활성탄소계 전기이중층 캐패시터의 전기화학적 특성 (Electrochemical Properties of Activated Carbon Capacitor Adopting a Proton-conducting Hydrogel Polymer Electrolyte)

  • 모하메드 라티파두;김광만;김용주;고장면
    • Elastomers and Composites
    • /
    • 제47권4호
    • /
    • pp.292-296
    • /
    • 2012
  • 폴리비닐알콜, 규소텅스텐산, 인산 및 수용액으로 구성된 $80{\mu}m$의 두께의 고분자겔 전해질 필름을 제조하여 활성탄소계 전기이중층 케페시터를 제조하였다. 제조한 고분자겔 전해질 필름은 상온에서 $10^{-2}S\;cm^{-1}$의 높은 이온전도도를 나타내었으며, 본 전해질 필름을 적용한 활성탄소계 전기이중층 케패시터는 100 mV/s에서 $58F\;g^{-1}$의 높은 캐패시턴스 특성과 우수한 수명특성을 나타내었다.

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.