• Title/Summary/Keyword: Conducting material

Search Result 774, Processing Time 0.03 seconds

Eletrochemical Characteristics of Ozone Generator using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 오존발생기의 전기화학적 특성)

  • Oh, One-Gyun;Kim, Gyu-Sik;Einaga, Yasuaki;Fujishima, Akira;Park, Soo-Gik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.585-588
    • /
    • 2001
  • Thin. Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped conducting diamond films were used as anode for generating ozone gas by electrolysis of acidic solution. In this work, we have studied ozone generating system using Boron-doped Diamond electrode. Electrochemical cell and ozone generating system were designed for decreasing the temperature of the system. which was elevated during the reaction. by circulation of electrolyte in the system. In order to determine the ozone generation properties of diamond electrode. experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

Electrical Propeties of Supercapacitor using Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 Supercapacitor의 전기적 특성)

  • 강광우;김명산;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.764-769
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Supercapactior cell of CP composite electrode with 1M LiClO$_4$/PC brings out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding 15Wt% SP270(PAnS15) and PT composite electrode adding 50%wt% SP270(PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/$\textrm{cm}^2$, respectively.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Electrochemical Properties of Conducting Polymer for Supercapacitor (Supercapacitor용 도전성 고분자의 전기화학적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.332-334
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Supercapacitor cell of CP composite electrode with 1M LiClO$_4$/ PC bring out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding 30wt% acetylene black was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PAn composite electrode adding 30wt% acetylene black in 1st and 50th cycles was 27F/g and 31F/g at current density of 1mA/$\textrm{cm}^2$. Supercapacitor cell with PAn composite electrode adding 30wt% acetylene black performed a good cycliability.

  • PDF

Eletrochemical Characteristics of Ozone Generator using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 오존발생기의 전기화학적 특성)

  • ;;Yasuaki Einaga;Akira Fujishima
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.585-588
    • /
    • 2001
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped conducting diamond films were used as anode for generating ozone gas by electrolysis of acidic solution. In this work, we have studied ozone generating system using Boron-doped Diamond electrode. Electrochemical cell and ozone generating system were designed for decreasing the temperature of the system, which was elevated during the reaction. by circulation of electrolyte in the system. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable while PbO$_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • ;;Katsuhiko Naoi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and polythiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT

  • PDF

Structural study of indium oxide thin films by metal organic chemical vapor deposition (저온화학기상증착에 의한 인듐산화막 구조에 관한 연구)

  • Pammi, S.Venkat.N.;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.47-47
    • /
    • 2007
  • Indium oxide conducting films were dep9sited on Si(100) substrates at various temperatures by liquid delivery metal organic chemical vapor deposition using Indium (III) tris (2,2,6,6-tetramethyl-3.5-heptanedionato) $(dpm)_3$ precursors. The films deposited at $200{\sim}400^{\circ}C$ were grown with a (111) preferred orientation and exhibit an increase of grain size from 21 to 33nm with increasing deposition temperature. In the range of deposition temperature, there is no metallic indium phase in deposited films.

  • PDF

Electrical Properties of Supercapacitor with Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 supercapaccitor의 전기적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.487-490
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Electrochemical capacitor(supercapacitor) cell of CP composite electrode with 1M LiClO$_4$PC bring out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding l5wt%SP270(PAnS15) and PT composite electrode adding 50wt%SP270 (PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/cm$^2$. Supercapacitor cell with PTS50(+)/PAnS15(-) showed good capacitance and stability with cycling.

  • PDF

Properties of Nb-doped TiO2 Transparent Conducting Oxide Film Fabricated by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 합성된 Nb-doped TiO2 투명전극의 특성)

  • Kim, Min-Young;Cho, Mun-Seong;Lim, Dong-Gun;Park, Jae-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.204-208
    • /
    • 2012
  • $TiO_2$ ($Ti_{1-x}Nb_xO_2$, x= 0.04~0.06) transparent conducting oxide film was fabricated by RF magnetron sputtering process and their electrical, optical, stability properties were studied. When the Nb 4 at% sputtering target was used with RF power 120 W, pressure 8 mTorr, post-annealing temperature $600^{\circ}C$, the resistivity of TNO film was $4{\times}10^{-4}\;{\Omega}-cm$. The optical transmittance in the visible wavelength was ca. 86%. TNO films require heat treatment during or after the deposition process. When the film was deposited at room temperature and post-annealed at $600^{\circ}C$, the lowest resistivity was obtained. When the TNO film was exposed to high temperature and humidity, the resistivity of the film was rather decreased. The stability to temperature and humidity implies that the TNO film could be a appropriate candidate for In-free, ZnO-free transparent conducting oxide materials.