• Title/Summary/Keyword: Conducting material

Search Result 778, Processing Time 0.031 seconds

Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application (PDP 투명전극의 응용을 위한 ITO 박막의 제작평가)

  • Park, Kang-Il;Lim, Dong-Gun;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF

Structural, Optical, and Electrical Properties of In2O3 Thin Films Deposited on Various Buffer Layers (다양한 버퍼층 위에 증착한 In2O3 박막의 구조, 광학 및 전기적 특성)

  • Kim, Moon-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.491-495
    • /
    • 2012
  • The effects of various buffer layers on the $In_2O_3$ transparent conducting films grown on glass substrates by radio-frequency reactive magnetron sputtering were investigated. The $In_2O_3$ thin films were deposited at $400^{\circ}C$ of growth temperature and 100% of oxygen flow rate. The optical, electrical, and structural and morphological properties of the $In_2O_3$ thin films subjected to buffer layers were examined by using ultraviolet-visible spectrophotometer, Hall-effect measurements, and X-ray diffractometer, respectively. The properties of $In_2O_3$ thin films showed different results, depending on the type of buffer layer. As for the $In_2O_3$ thin film deposited on ZnO buffer layer, the average transmittance was 89% and the electrical resistivity was $7.4{\times}10^{-3}\;{\Omega}cm$. The experimental results provide a way for growing the transparent conducting film with the optimum condition by using an appropriate buffer layer.

Solution Processed Single Walled Carbon Nanotubes Transparent Conducting Films (투명전도막을 위한 용해 처리된 단일막 탄소나노튜브)

  • Manivannan, S.;Jeong, Il-Ok;Ryu, Je-Hwang;Jang, Jin;Park, Kyu-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.45-45
    • /
    • 2008
  • In recent years, new materials and technology has been developed using single-walled carbon nanotubes (SWCNTs) as an alternative to indium tin oxide (ITO) to fulfil the requirements towards novel technological drive. These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. In addition, SWCNTs can be solution processed to replace the sophisticated vacuum techniques at high temperatures. In the present work, transparent conducting films were fabricated from the purified SWCNTs. Dispersion of purified SWCNTs was accomplished in 1,2-dichlorobenzene without using surfactants or polymers following ultrasonic process. We achieved coating of nanotubes film on poly ether suiphone (PES) for an average sheet resistance ~110 ${\Omega}/{\Box}$ of optical transmittance 80% at 550 nm. Conventional spin coating method was followed to fabricate films from the purified and dispersed nanotubes solution. The results will be presented.

  • PDF

Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes (PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.716-719
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

Electrochemical Properties of Manganese Oxide coated onto Carbon Nanotubes for Energy Storage Applications (보조에너지원으로서의 수퍼커패시터용 나노전극소재로서의 탄소/망간산화물의 전기화학적 특성)

  • Ahn, Kyun-Young;Ma, Sang-Bok;Kim, Kwang-Bum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.143-146
    • /
    • 2007
  • Birnessite-type manganese dioxide($MnO_2$) was coated uniformly onto carbon nanotubes (CNTs) through a spontaneous direct redox reaction between CNTs and permanganate ions($MnO_4\;^-$). The initial specific capacitance of the $MnO_2/CNT$ nanocomposite in an organic electrolyte at a large current density of 1 A/g was 250 F/g, which is equivalent to 139 mAh/g based on the total weight of the electrode material including the electroactive material, conducting agent and binder. The specific capacitance of the $MnO_2$ in the $MnO_2/CNT$ nanocomposite was as high as 580 F/g (320 mAh/g), indicating excellent electrochemical utilization of the $MnO_2$. The addition of CNTs as a conducting agent can improve the high rate capability of $MnO_2/CNT$ nanocomposite considerably. An analysis of the in-situ X-ray absorption near-edge structure (XANES) showed an improvement in the structural and electrochemical reversibility of the $MnO_2/CNT$ nanocomposite by heat-treatment.

  • PDF

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • Kim, Han-Joo;Ryu, Boo-Hyung;Naoi, Katsuhiko;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and poly thiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • Yang, J.S.;Seong, H.Y.;Keum, M.J.;Son, I.H.;Shin, S.K.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Fabrication of IGZO Transparent Conducting thin Films by The Use of Combinational Magnetron Sputtering (콤비네이숀 마그네트론 스퍼터링법에 의한 IGZO 투명전도막의 제조)

  • Jung, Jae-Hye;Lee, Se-Jong;Cho, Nam-In;Lee, Jai-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.425-425
    • /
    • 2008
  • The transparent conducting oxides(TCOs) are widely used as electrodes for most flat panel display devices(FPDs), electrodes in solar cells and organic light emitting diodes(OLED). Among them, indium oxide materials are mostly used due to its high electrical conductivity and a high transmittance in the visible spectrum. The present study reports on a study of the electrical and optical properties of IGZO thin films prepared on glass and PET substrates by the combinational magnetron sputtering. We use the targets of IZO and Ga2O3 for the deposition process. In some case the deposition process is coupled with the End-Hall ion-beam treatment onto the substrates before the sputtering. In addition we control the deposition rate to optimize the film quality and to minimize the surface roughness. Then we investigate the effects of the Ar gas pressure and RF power during the sputtering process upon the electrical, optical and morphological properties of thin films. The properties of prepared IGZO thin films have been analyzed by using the XRD, AFM, a-step, 4-point probe, and UV spectrophotometer.

  • PDF

Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering (Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성)

  • 박강일;김병섭;임동건;이수호;곽동주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF