• Title/Summary/Keyword: Conductance

Search Result 1,148, Processing Time 0.038 seconds

Effect of Watering on Growth and Essential Oil Content of Sweet Basil (Ocimum basilicum) (관수량이 sweet basil(Ocimum basilicum)의 생장과 정유함량에 미치는 영향)

  • Baeck, Hae-Won;Park, Kuen-Woo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This experiment was carried out to investigate watering with relation to growth, quality and yield of essential oil in sweet basil. The degree of water stress was taken as amount of watering. D1 was watered with 25mL for 2 weeks and 30mL from 4 to 5 weeks after planting in Wagner pot (1/20000a, ${\phi}24cm$). As this, 75mL and 90mL, 225mL and 270mL, and 675mL and 810mL were watered in D2, D3, and D4 treatment respectively. DFT was set up as water stress was not inflicted. The growth of basil in D3 and D4 was better than that of others, in which root activity was as much twice as that of D1. Essential oil of D1 was recorded the lowest content as 0.33%. The result of proline content, peroxidase activity, photosynthesis, stomatal conductance and stomatal resistance were proved D1 to be stressed. This treatment consequently increased the content of essential oil. In consideration of growth and essential oil content, D3 treatment was highest as 47.37mg in oil production per plant. Finally, D3 watered with 225mL for 2 weeks and 275mL from 4 to 5 weeks after planting could be selected on the purpose of both plant growth and essential oil production. Essential oil content of sweet basil was increased in response to water stress. For increase of essential oil yield, oil synthesis could be raised by giving water stress just before harvesting.

  • PDF

Effects of Shading Treatments on Growth and Physiological Characteristics of Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara Seedling (차광처리가 눈개승마 유묘의 생장 및 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Kwon, Young Hyoo;Jeon, Seong Ryeol;Lee, Chang Woo;Seo, Dong Jin;Park, Wan Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2019
  • Background: This study was conducted to investigate the changes in the photosynthetic parameters, chlorophyll content, chlorophyll fluorescence, and growth characteristics of Aruncus dioicus var. kamtschaticus seedlings under different shading treatments. Methods and Results: The shading treatment was regulated with the shading level (non-shaded, 35%, 55%, and 75% shading). Photosynthetic activities, such as net photosynthetic rate, stomatal conductance, stomatal transpiration rate, and performance index on absorption basis ($PI_{ABS}$)were the highest under 35% shading ($4.36{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, $54.2mmol\;H_2O{\cdot}m^2{\cdot}s^{-1}$, $0.66mmol\;H_2O{\cdot}m^{-2}{\cdot}s^{-1}$, and 1.3, respectively), and the lowest under 75% shading. This implies that the decrease in net photosynthetic rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. Thechlorophylla, b, and a + b contents were increased with elevating shading level and the chlorophyll a/b ratio showed non-significant differences. It was found that the dry weight (leaf, shoot, and whole) was the highest (1.14 g, 0.49 g, and 2.31 g, respectively) under 35% shading and the t/R ratio was the highest under 75% shading. Conclusions: It is concluded that 75% shading exhibited a strong reduction of photosynthetic activity, and 35% shading showed the best conditions for the early growth and cultivation of A. dioicus var. kamtschaticus.

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress (건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향)

  • Jin, Eon-Ju;Yoon, Jun-Hyuk;Bae, Eun-Ji;Choi, Myung-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.196-207
    • /
    • 2019
  • This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

Screening of Bacterial Strains for Alleviating Drought Stress in Chili Pepper Plants (고추 식물의 건조 스트레스 완화를 위한 미생물 선발)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Drought stress is considered as one of major abiotic stresses; it leads to reduce plant growth and crop productivity. In this study, we selected bacterial strains for alleviating drought stress in chili pepper plants. As drought-tolerant bacteria, 28 among 447 strains were pre-selected by in vitro assays including growth in drought condition with polyethylene glycol and plant growth-promoting traits including production of 1-aminocyclopropane-1-carboxylate deaminase, indole-3-acetic acid and exopolysaccharide. Sequentially, 7 among pre-selected 28 strains were screened based on relative water content (RWC); GLC02 and KJ40, among seven strains were finally selected by RWC and malondialdehyde (MDA) in planta trials under an artificial drought condition by polyethylene glycol solution. Two strains GLC02 and KJ40 reduced drought stress in a natural drought condition as well as an artificial condition. Strains GLC02 or KJ40 increased shoot fresh weight, chlorophyll and stomatal conductance while they decreased MDA in chili pepper plants under a natural drought condition. However, two strains did not show biocontrol activity against diseases caused by Phytophthora capsici and Xanthomonas campestris pv. vesicatoria in chili pepper plants. Taken together, strains GLC02 or KJ40 can be used as bio-fertilizer for alleviation of drought stress in chili pepper plants.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.

Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant (방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jeong, Namhee;Jin, Mina;Son, Beom-Young;Kim, Dool-Yi
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • Salt stress is a significant factor limiting growth and productivity in crops. However, little is known about the response and resistance mechanism to salt stress in maize. The objective of this research was to develop an enhanced salt-tolerant silage maize by mutagenesis with gamma radiation. To generate gamma radiation-induced salt-tolerant silage maize, we irradiated a KS140 inbred line with 100 Gy gamma rays. Salt tolerance was determined by evaluating plant growth, morphological changes, and gene expression under NaCl stress. We screened 10 salt-tolerant maize inbred lines from 2,248 M2 mutant populations and selected a line showing better growth under salt stress conditions. The selected 140RS516 mutant exhibited improved seed germination and plant growth when compared with the wild-type under salt stress conditions. Enhanced salt tolerance of the 140RS516 mutant was attributed to higher stomatal conductance and proline content. Using whole-genome re-sequencing analysis, a total of 328 single nucleotide polymorphisms and insertions or deletions were identified in the 140RS516 mutant. We found that the expression of the genes involved in salt stress tolerance, ABP9, CIPK21, and CIPK31, was increased by salt stress in the 140RS516 mutant. Our results suggest that the 140RS516 mutant induced by gamma rays could be a good material for developing cultivars with salt tolerance in maize.

Shading Treatment-Induced Changes in Physiological Characteristics of Thermopsis lupinoides (L.) Link (차광처리에 따른 갯활량나물의 생리 특성)

  • Seungju Jo;Dong-Hak Kim;Jung-Won Yoon;Eun Ju Cheong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.198-209
    • /
    • 2024
  • This study aimed to investigate the impact of light intensity, manipulated through different shading levels, on the growth and physiological responses of Thermopsis lupinoides. To assess the effects of shading treatments, we examined leaf mass per area, chlorophyll content, chlorophyll fluorescence response, and photosynthetic characteristics. T. lupinoidesexhibited adaptive responses under low light conditions (50% shading), showing increased leaf area and decreased leaf mass per area as shading levels increased. These changes indicate morpho-physiological adaptations to reduced light availability. At 50% shading, the physiological and ecological responses were favorable, with optimal photosynthetic functions including chlorophyll content, photosynthesis saturation point, photosynthetic rate, carbon fixation efficiency, stomatal conductance, transpiration rate, and water use efficiency. However, at 95% shading, the essential light conditions for growth were not met, significantly impairing photosynthetic functions. Consequently, 50% shading was determined to be the most optimal condition for T. lupinoides growth. These findings provide valuable insights for effective ex-situconservation practices and site selection for T. lupinoides, serving as foundational data for habitat restoration efforts.

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration (염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성)

  • Kwon, Min-Young;Kim, Sun-Hee;Sung, Joo-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.500-509
    • /
    • 2014
  • To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.