• 제목/요약/키워드: Conditional predictive ordinate

검색결과 6건 처리시간 0.019초

Bayesian curve-fitting with radial basis functions under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.749-754
    • /
    • 2015
  • This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.

Detecting the Influential Observation Using Intrinsic Bayes Factors

  • Chung, Younshik
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.81-94
    • /
    • 2000
  • For the balanced variance component model, sometimes intraclass correlation coefficient is of interest. If there is little information about the parameter, then the reference prior(Berger and Bernardo, 1992) is widely used. Pettit nd Young(1990) considered a measrue of the effect of a single observation on a logarithmic Bayes factor. However, under such a reference prior, the Bayes factor depends on the ratio of unspecified constants. In order to discard this problem, influence diagnostic measures using the intrinsic Bayes factor(Berger and Pericchi, 1996) is presented. Finally, one simulated dataset is provided which illustrates the methodology with appropriate simulation based computational formulas. In order to overcome the difficult Bayesian computation, MCMC methods, such as Gibbs sampler(Gelfand and Smith, 1990) and Metropolis algorithm, are empolyed.

  • PDF

Sensitivity analysis in Bayesian nonignorable selection model for binary responses

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.187-194
    • /
    • 2014
  • We consider a Bayesian nonignorable selection model to accommodate the selection bias. Markov chain Monte Carlo methods is known to be very useful to fit the nonignorable selection model. However, sensitivity to prior assumptions on parameters for selection mechanism is a potential problem. To quantify the sensitivity to prior assumption, the deviance information criterion and the conditional predictive ordinate are used to compare the goodness-of-fit under two different prior specifications. It turns out that the 'MLE' prior gives better fit than the 'uniform' prior in viewpoints of goodness-of-fit measures.

A BAYESIAN APPROACH FOR A DECOMPOSITION MODEL OF SOFTWARE RELIABILITY GROWTH USING A RECORD VALUE STATISTICS

  • Choi, Ki-Heon;Kim, Hee-Cheul
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.243-252
    • /
    • 2001
  • The points of failure of a decomposition process are defined to be the union of the points of failure from two component point processes for software reliability systems. Because sampling from the likelihood function of the decomposition model is difficulty, Gibbs Sampler can be applied in a straightforward manner. A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For model determination, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. A numerical example with a simulated data set is given.

소프트웨어 신뢰모형에 대한 베이지안 접근 (Bayesian Approach for Software Reliability Models)

  • 최기헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.119-133
    • /
    • 1999
  • 마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.

  • PDF

MUSA-OKUMOTO와 ERLANG(2)의 중첩과정에 대한 베이지안 계산 연구 (Bayesian Computation for Superposition of MUSA-OKUMOTO and ERLANG(2) processes)

  • 최기헌;김희철
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.377-387
    • /
    • 1998
  • 컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적인 정당성을 고려, 마코프연쇄와 메트로폴리스방법의 관계를 고찰하였으며, 특히 Mus-Okumoto와 Erlang(2)의 중첩모형에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하며 베이지안 계산과 예측 우도기준에 의 한 모형선택을 제안하고 Cox-Lewis에 의해 계시된 Thing method를 이용한 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과가 제시되었다.

  • PDF