• Title/Summary/Keyword: Conditional predictive ordinate

Search Result 6, Processing Time 0.016 seconds

Bayesian curve-fitting with radial basis functions under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.749-754
    • /
    • 2015
  • This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.

Detecting the Influential Observation Using Intrinsic Bayes Factors

  • Chung, Younshik
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2000
  • For the balanced variance component model, sometimes intraclass correlation coefficient is of interest. If there is little information about the parameter, then the reference prior(Berger and Bernardo, 1992) is widely used. Pettit nd Young(1990) considered a measrue of the effect of a single observation on a logarithmic Bayes factor. However, under such a reference prior, the Bayes factor depends on the ratio of unspecified constants. In order to discard this problem, influence diagnostic measures using the intrinsic Bayes factor(Berger and Pericchi, 1996) is presented. Finally, one simulated dataset is provided which illustrates the methodology with appropriate simulation based computational formulas. In order to overcome the difficult Bayesian computation, MCMC methods, such as Gibbs sampler(Gelfand and Smith, 1990) and Metropolis algorithm, are empolyed.

  • PDF

Sensitivity analysis in Bayesian nonignorable selection model for binary responses

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.187-194
    • /
    • 2014
  • We consider a Bayesian nonignorable selection model to accommodate the selection bias. Markov chain Monte Carlo methods is known to be very useful to fit the nonignorable selection model. However, sensitivity to prior assumptions on parameters for selection mechanism is a potential problem. To quantify the sensitivity to prior assumption, the deviance information criterion and the conditional predictive ordinate are used to compare the goodness-of-fit under two different prior specifications. It turns out that the 'MLE' prior gives better fit than the 'uniform' prior in viewpoints of goodness-of-fit measures.

A BAYESIAN APPROACH FOR A DECOMPOSITION MODEL OF SOFTWARE RELIABILITY GROWTH USING A RECORD VALUE STATISTICS

  • Choi, Ki-Heon;Kim, Hee-Cheul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.243-252
    • /
    • 2001
  • The points of failure of a decomposition process are defined to be the union of the points of failure from two component point processes for software reliability systems. Because sampling from the likelihood function of the decomposition model is difficulty, Gibbs Sampler can be applied in a straightforward manner. A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For model determination, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. A numerical example with a simulated data set is given.

Bayesian Approach for Software Reliability Models (소프트웨어 신뢰모형에 대한 베이지안 접근)

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.119-133
    • /
    • 1999
  • A Markov Chain Monte Carlo method is developed to compute the software reliability model. We consider computation problem for determining of posterior distibution in Bayseian inference. Metropolis algorithms along with Gibbs sampling are proposed to preform the Bayesian inference of the Mixed model with record value statistics. For model determiniation, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions. A numerical example with simulated data set is given.

  • PDF

Bayesian Computation for Superposition of MUSA-OKUMOTO and ERLANG(2) processes (MUSA-OKUMOTO와 ERLANG(2)의 중첩과정에 대한 베이지안 계산 연구)

  • 최기헌;김희철
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.377-387
    • /
    • 1998
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced latent variables that indicates with component of the Superposition model. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Metropolis algorithms along with Gibbs steps are proposed to preform the Bayesian inference of such models. for model determination, we explored the Pre-quential conditional predictive Ordinate(PCPO) criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions, we consider in this paper Superposition of Musa-Okumoto and Erlang(2) models. A numerical example with simulated dataset is given.

  • PDF