• 제목/요약/키워드: Condition assessment

검색결과 2,070건 처리시간 0.031초

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

전력계통 운전조건을 고려한 순간전압강하 추계 방법 (Method to Estimate Expected Sag Frequency Considering the Operating Condition of Power System)

  • 손정대;이계병;박창현
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.382-387
    • /
    • 2016
  • This paper deals with the assessment of voltage sags regarding the variation of system operating conditions. In general, voltage sag assessment is performed by assuming the constant operating condition throughout the year. However, the assumption can lead to assessment errors in case of considerable changes of system operation condition. This paper presents a method to estimate ESF(expected sag frequency) considering the operating conditions according to the changes of power demand throughout the year.

3차원 교량모델에서의 상태평가정보 가시화를 위한 요구사항 분석 (Requirement analysis for visualization of condition assessment in 3D Bridge Model)

  • 황명강;김봉근;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.238-241
    • /
    • 2010
  • This paper proposed an approach to integrate bridge condition assessment related information with a 3D bridge model to visualize bridge condition assessment information in the 3D bridge model. In this approach, bridge information model plays a centric role in the data access and realizes the integration of bridge initial design and historical bridge maintenance records. Behind the bridge information model is a rational database. After the system requirements for this approach, several IFC data model extensions are suggested.

  • PDF

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

전력기기 내환경특성평가를 위한 복합가속열화시스템 제작 (The Combined Testing System for Simulating Condition of Acceleratedly Deteriorated Environment)

  • 이정기;김민규;김익수;정주영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.182-183
    • /
    • 2006
  • It has been studied about the important consideration in designing and construction of the reliability assessment facilities including the combined testing system for simulating condition of acceleratedly deteriorated environment, which enable to test and evaluate the large-sized HV power apparatus without any disassembly up to transmission class in this paper. Also it is described simply about its ratings and main technical specifications and trial running of the system. To evaluate the performance characteristics against combined test condition for various power installation, especially for the polymer type insulators and kinds of bushings, brief investigation and an analysis of test objects and related international codes and standards have been conducted.

  • PDF

교량의 외관 조사에 의한 상태평가기준 개선안 (Improved Criteria for Condition Assessment of Bridges Based on Visual Inspection)

  • 오병환;신경준;김광수;김지상;이상철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권4호
    • /
    • pp.205-213
    • /
    • 2001
  • The condition assessment of bridges is one of the important procedures in the safety evaluation of the structures. The current inspection guideline is rather ambiguous and vague so that the inspection results based on the existing guidelines are highly subjective and varing from person to person and even day to day for a given person. It is therefore, necessary to improve the current inspection criteria in order to provide consistent results in safety assessment. To circumvent possible inconsistencies in inspection and rating of bridge components, the revised criteria have been proposed in this study. The proposed guideline and criteria may be efficiently used for the realistic and consistent assessment of bridge structures.

  • PDF

주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구 (Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer)

  • 길형준
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

운전중인 대형 터빈발전기에서 절연상태 평가 (Assessment of Insulation Condition in Operating Large Turbine Generator)

  • 김희동
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권6호
    • /
    • pp.324-329
    • /
    • 2004
  • Six stator slot couplers(SSC) and a flux probe sensor installed on the stator winding slots of large turbine generator. Assessment of insulation condition has been based upon the measurements of partial discharge(PD) of stator windings and shorted-turn of rotor windings in operating large turbine generator. The maximum PD magnitude(Qm), normalized quantify number(NQN), PD pattern and shorted-turn were measured using on-line insulation condition monitoring system. The NQN and Qm of slot PD side in the phase A are indicated the highest value in six SSC sensors. Monitoring system results showed that discharge at conductor surface and internal discharge were detected at the surface of stator winding and in voids of the groundwall insulation. Insulation of stator and rotor windings in large turbine generator was judged to be in good condition.