• Title/Summary/Keyword: Condition Rating Model

Search Result 54, Processing Time 0.022 seconds

UPFC Model for Stability Study Considering the Controller Rating (UPFC 설비용량을 고려한 안정도 해석 모형)

  • Kim, H.M.;Kook, K.S.;Jeon, J.H.;Lee, Y.W.;Oh, T.K.;Jang, B.H.;Chu, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.269-272
    • /
    • 1998
  • This paper presents an UPFC(Unified Power Flow Controlled model that considered rating for stability study. The proposed UPFC model was implemented by PSS/E and IPLAN. As a control strategy for damping electromechnical oscillations, energy function method was adopted. By the adopted control law, the damping effect is robust with respect to loading condition, fault location and network structure. The effect of control of the UPFC model was demonstrated on a one machine infinite bus system.

  • PDF

Condition assessment model for residential road networks

  • Salman, Alaa;Sodangi, Mahmoud;Omar, Ahmed;Alrifai, Moath
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.361-378
    • /
    • 2021
  • While the pavement rating system is being utilized for periodic road condition assessment in the Eastern Region municipality of Saudi Arabia, the condition assessment is costly, time-consuming, and not comprehensive as only few parts of the road are randomly selected for the assessment. Thus, this study is aimed at developing a condition assessment model for a specific sample of a residential road network in Dammam City based on an individual road and a road network. The model was developed using the Analytical Hierarchy Process (AHP) according to the defect types and their levels of severity. The defects were arranged according to four categories: structure, construction, environmental, and miscellaneous, which was adopted from sewer condition coding systems. The developed model was validated by municipality experts and was adjudged to be acceptable and more economical compared to results from the Eastern region municipality (Saudi Arabia) model. The outcome of this paper can assist with the allocation of the government's budget for maintenance and capital programs across all Saudi municipalities through maintaining road infrastructure assets at the required level of services.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

A Study on the Acoustic Power Estimation in the Blower for a Vehicle Air-handling System (승용차 공조계용 블로우어의 음향출력 평가에 관한 연구)

  • Kim, Seock-Hyun;Yoo, Sung-Woo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.87-93
    • /
    • 1997
  • A Special purpose program, based on the dimensional analysis, was developed to estimate the wide band turbulent noise in the blower of vehicle airhandling system. Acoustic power level was measured at 4 rating points around the operating condition. The experiment was performed on the reference blower model using international standard chamber, which could measure acoustic power according to the air-handling performance. Analytical model of the blower noise was determined by the measured data. Using the analytical acoustic model, it was possible to estimated the effect by the change of the operating condition, such as flow rate, static pressure and wheel rotating speed, furthermore, the diameter and the width of blower.

  • PDF

A Study on Development of the Concrete Pavement Condition Index (콘크리트 포장상태 평가지수의 개발에 관한 연구)

  • Kwon, Soo-Ahn;Kim, Nam-Ho;Seo, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.145-153
    • /
    • 2000
  • Pavement evaluation is a fundamental component for rational pavement management. Optimal rehabilitation method and the priority of rehabilitation should be based on the evaluation data. Some types of pavement condition index are needed for objective evaluation of Pavement condition and management of road network. In this study a expressway concrete pavement condition index model is developed through regression analysis that correlates panel rating with distress measurement from the test sections. The derived condition index can be used for network level PMS for the expressway concrete pavement. Correlation coefficient of the model was 0.68. The selected independent variables were International Roughness Index, crack and area of patching.

  • PDF

Prediction of Dynamic Line Rating by Time Series Weather Models (시계열 기상 모델을 이용한 동적 송전 용량의 예측)

  • Kim, Dong-Min;Bae, In-Su;Kim, Jin-O;Chang, Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.35-38
    • /
    • 2005
  • This paper suggests the method that forecast Dynamic Line Rating (DLR). Thermal Overload Risk (TOR) of next time is forecasted based on current weather condition and DLR value by Monte Carlo Simulation (MCS). To model weather element of transmission line for MCS, we will propose the use of weather forecast system and statistical models that time series law is applied. Also, through case study, forecasted TOR probability confirmed can utilize by standard that decide DLR of next time. In short, proposed method may be used usefully to keep safety of transmission line and reliability of supply of electric Power by forecasting transmission capacity of next time.

  • PDF

A Numerical Flood Routing Model at the Downstream of the Han River (한강하류부(漢江下流部)의 홍수추적(洪水追跡) 수치모형개발(數値模型開發))

  • Lee, Won Hwan;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 1989
  • The numerical model for the flood routing at the downstream of the Han river is established by using Preissmann's four-point linear implicit finite difference scheme. It is approved by the applications of this model to the selected four flood events that the released discharge hydrograph at Paldang dam which is used as upstream boundary condition of this model is better than the discharge hydrograph at Goan site. Such a result is due to the poor reliability of rating curve at Goan site. As its alternative, new rating curve at Goan site is proposed by means of applications of this numerical flood routing model. The variations of Manning's roughness coefficient may be negligible in view of the flood routing results.

  • PDF

A Study on the Decision Making Model for Construction Projects using Fuzzy-AHP and Fuzzy-Delph (Fuzzy-AHP와 Fuzzy-Delphi기법을 이용한 건설프로젝트의 의사결정 모델에 관한 연구)

  • Lee Dong-Un;Kim Yeong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.81-89
    • /
    • 2003
  • This research suggests the FD-AHP decision making model for Construction Projects which is composed of two main method to prevent a ranking invert situation ; First, to make the consensus of the experts consistent, we utilize Fuzzy-Delphi method to adjust the fuzzy rating of every expert to achive the consensus condition with the fuzzy linguistic presentation. Second, to handle vague linguistic presentation caused by expert's experiences and subjective judgement, we propose Fuzzy-AHP which is able to enhance precision of construction projects decision mating situation. Moreover, with the correlation analysis, we show that the validity of the FD-AHP model under a decision making task specially on where highly demanded expert's experiences and intuition.

Potential Mapping of Mountainous Wetlands using Weights of Evidence Model in Yeongnam Area, Korea (Weight of Evidence 기법을 이용한 영남지역의 산지습지 가능지역 추출)

  • Baek, Seung-Gyun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • Weight of evidence model was applied for potential mapping of mountainous wetland to reduce the range of the field survey and to increase the efficiency of operations because the surveys of mountainous wetland need a lot of time and money owing to inaccessibility and extensiveness. The relationship between mountainous wetland location and related factors is expressed as a probability by Weight of evidence model. For this, the spatial database consist of slope map, curvature map, vegetation index map, wetness index map, soil drainage rating map was constructed in Yeongnam area, Korea, and weights of evidence based on the relationship between mountainous wetland location and each factor rating were calculated. As a result of correlation analysis between mountainous wetland location and each factors rating using likelihood ratio values, the probability of mountainous wetlands were increased at condition of lower slope, lower curvature, lower vegetation index value, lower wetness value, moderate soil drainage rating. Mountainous Wetland Potential Index(MWPI) was calculated by summation of the likelihood ratio and mountainous wetland potential map was constucted from GIS integration. The mountain wetland potential map was verified by comparison with the known mountainous wetland locations. The result showed the 75.48% in prediction accuracy.

Transitions between Uncontrolled Submerged and Uncontrolled Free in Low-Head Ogee Spillway

  • Hong, Seung Ho;Hong, Da Hee;Song, Yang Heon;Lee, Jeong Myeong;Jegal, Jin A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.155-155
    • /
    • 2022
  • Low head, ogee spillways is popularly used to defense against floods as well as to provide water for irrigation. Spillway is also used to assess compliance with water quality regulations by controlling amount of discharge to the downstream of a channel. For the purpose of water resource management and/or environmental aspects as explained above, the flow discharge through spillways need to be correctly rated as a function of geometry and hydraulic variables. Typically, four flow conditions are encountered during the operation of spillway: (a) uncontrolled free flow (UF); (b) uncontrolled submerged flow (US); controlled free flow (CF); and controlled submerged flow (CS), and each condition has a unique rating equation. However, one of the tricky part of the spillway operation is finding correct flow type over the spillway because structures can operate under both submerged and free flow conditions, and the types are continuously changing over time depending on the amount of discharge, head water and tail water elevation. Quite obviously, if the wrong rating curve relationship is applied because of misjudgment of the flow type due to a transition, a serious error can occur. Thus, an hydraulic model study of one of spillway structure located in South Florida was conducted for the purpose of developing transition relationships. In this presentation, US to UF transition is highlighted.

  • PDF