• Title/Summary/Keyword: Condition Changes Prediction

Search Result 120, Processing Time 0.031 seconds

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

A Study on the Prediction of Residual Probability of Fine Dust in Complex Urban Area (복잡한 도심에서의 유입된 미세먼지 잔류 가능성 예보 연구)

  • Park, Sung Ju;Seo, You Jin;Kim, Dong Wook;Choi, Hyun Jeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.111-128
    • /
    • 2020
  • This study presents a possibility of intensification of fine dust mass concentration due to the complex urban structure using data mining technique and clustering analysis. The data mining technique showed no significant correlation between fine dust concentration and regional-use public urban data over Seoul. However, clustering analysis based on nationwide-use public data showed that building heights (floors) have a strong correlation particularly with PM10. The modeling analyses using the single canopy model and the micro-atmospheric modeling program (ENVI-Met. 4) conducted that the controlled atmospheric convection in urban area leaded to the congested flow pattern depending on the building along the distribution and height. The complex structure of urban building controls convective activity resulted in stagnation condition and fine dust increase near the surface. Consequently, the residual effect through the changes in the thermal environment caused by the shape and structure of the urban buildings must be considered in the fine dust distribution. It is notable that the atmospheric congestion may be misidentified as an important implications for providing information about the residual probability of fine dust mass concentration in the complex urban area.

Remote Sensing Applications for Malaria Research : Emerging Agenda of Medical Geography (원격탐사 자료를 이용한 말라리아 연구 : 보건지리학적 과제와 전망)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.473-493
    • /
    • 2012
  • Malaria infection is sensitively influenced by regional meteorological conditions along with global climate change. Remote sensing techniques have become an important tool for extraction of climatic and environmental factors, including rainfall, temperature, surface water, soil moisture, and land use, which are directly linked to the habitat qualities of malaria mosquitoes. Improvement of sensor fidelity with higher spatial and spectral resolution, new multinational sensor development, and decreased data cost have nurtured diverse remote sensing applications in malaria research. In 1984, eradication of endemic malaria was declared in Korea, but reemergence of malaria was reported in mid-1990s. Considering constant changes in malaria cases since 2000, the epidemiological management of the disease needs careful monitoring. Geographically, northmost counties neighboring North Korea have been ranked high in the number of malaria cases. High infection rates in these areas drew special attention and led to a hypothesis that malaria dispersion in these border counties might be caused by north-origin, malaria-bearing adult mosquitoes. Habitat conditions of malaria mosquitoes are important parameters for prediction of the vector abundance. However, it should be realized that malaria infection and transmission is a complex mechanism, where non-environmental factors, including human behavior, demographic structure, landscape structure, and spatial relationships between human residence and the vector habitats, are also significant considerations in the framework of medical geography.

  • PDF

Study on the Estimation of Long Life Cycle and Reliability Tests for Epoxy Insulation Busway System (에폭시 박막 절연형 버스웨이 시스템의 장기 수명 및 신뢰성 평가에 관한 연구)

  • Jang, Dong-Uk;Park, Seong-Hee;Lee, Kang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.261-268
    • /
    • 2018
  • The use of electric cable was limited due to the installation time and large space as the increase of power demand and load quantity in side line. In order to solve these problems, the application of busway system which can supply the large current was increasing. But it was lack of methods of performance tests to evaluate the reliability and results of test for busway system. In this paper, we presented items to evaluate the reliability test for epoxy coated busway system with reference to IEC 61349-6. In addition, we proposed items to evaluate the reliability and long term life cycle test for the epoxy coated busway system. The combined acceleration deterioration test that reflects actual conditions of the survey as much as possible was conducted considering both thermal and electrical stresses. The deterioration condition was selected to satisfy fifty years life expectation and the insulation performance verification test of the busway system confirmed the long term life prediction. Furthermore, as test items for reliability assessment of compliance with the environment for the use of temperature, humidity and load current where busway system was installed, thermal overload test, water immersion test, cold shock temperature test and thermal cycle test were performed. And we examined changes in characteristics and abnormality after tests. From results, the test items presented to evaluate performance and reliability of the epoxy insulated busway system were confirmed to be appropriate in this paper, and the performance of the product was also confirmed to be excellent for reliability tests.

Value of Bone Scintigraphy and Single Photon Emission Computed Tomography (SPECT) in Lumbar Facet Disease and Prediction of Short-term Outcome of Ultrasound Guided Medial Branch Block with Bone SPECT

  • Koh, Won-Uk;Kim, Sung-Hoon;Hwang, Bo-Young;Choi, Woo-Jong;Song, Jun-Gul;Suh, Jeong-Hun;Leem, Jeong-Gill;Shin, Jin-Woo
    • The Korean Journal of Pain
    • /
    • v.24 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Background: Facet joint disease plays a major role in axial low-back pain. Few diagnostic tests and imaging methods for identifying this condition exist. Single photon emission computed tomography (SPECT) is reported that it has a high sensitivity and specificity in diagnosing facet disease. We prospectively evaluated the use of bone scintigraphy with SPECT for the identification of patients with low back pain who would benefit from medial branch block. Methods: SPECT was performed on 33 patients clinically suspected of facet joint disease. After SPECT, an ultrasound guided medial branch block was performed on all patients. On 28 SPECT-positive patients, medial branch block was performed based on the SPECT findings. On 5 negative patients, medial branch block was performed based on clinical findings. For one month, we evaluated the patients using the visual analogue scale (VAS) and Oswestry disability index. SigmaStat and paired t-tests were used to analyze patient data and compare results. Results: Of the 33 patients, the ones who showed more than 50% reduction in VAS score were assigned 'responders'. SPECT positive patients showed a better response to medial branch blocks than negative patients, but no changes in the Oswestry disability index were seen. Conclusions: SPECT is a sensitive tool for the identification of facet joint disease and predicting the response to medial branch block.

Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria (토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성)

  • Lee, Seung Yeop;Roh, Yul;Jeong, Jong Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • As we are trying to in-situ treat (purify or immobilize) heavy metals or radionuclides in groundwater, one of the geochemical factors to be necessarily considered is the value of oxidation/reduction potential (ORP) of the groundwater. A biogeochemical impact on the characteristic ORP change of groundwater taken from the KAERI underground was observed as a function of time by adding electron-donor (lactate), electron-acceptor (sulfate), and indigenous bacteria in a laboratory condition. There was a slight increase of Eh (slow oxidation) of the pure groundwater with time under a $N_2$-filled glove-box. However, most of groundwaters that contained lactate, sulfate or bacteria showed Eh decrease (reduction) characteristics. In particular, when 'Baculatum', a local indigenous sulfate-reducing bacterium, was injected into the KAERI groundwater, it turned to become a highly-reduced one having a decreased Eh to around -500 mV. Although the sulfate-reducing bacterium thus has much greater ability to reduce groundwater than other metal-reducing bacteria, it surely necessitated some dissolved ferrous-sulfate and finally generated sulfide minerals (e.g., mackinawite), which made a prediction for subsequent reactions difficult. As a result, the ORP of groundwater was largely affected even by a slight injection of nutrient without bacteria, indicating that oxidation state, solubility and sorption characteristics of dissolved contaminants, which are affected by the ORP, could be changed and controlled through in-situ biostimulation method.

A Study on the Development of the Cash-Flow Forecasting Model in Apartment Business factoring tn Housing Payment Collection Pattern and Payment Condition for Construction Expences (분양대금 납부패턴과 공사대금 지급방식 변화를 고려한 공동주택사업의 현금흐름 예측모델 개발에 관한 연구)

  • Kim Soon-Young;Kim Kyoon-Tai;Han Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.353-358
    • /
    • 2001
  • Since the financial crisis broke out, liquidity has become the critical issue in housing construction industry. In order to secure liquidity, it is prerequisite to precisely forecast cash flow. However, construction companies have failed to come up with a systematic process to manage and forecast cash flow. Until now, companies have solely relied on the prediction of profits and losses, which is carried out as they review business feasibility. To obtain more accurate cash flow forecast model, practical pattern of payments should be taken into account. In this theory, basic model that analyzes practical housing payment collection pattern resulting from prepayments and arrears is described. This model is to complement conventional cash flow forecast scheme in the phase of business feasibility review. Analysis result on final losses in cash that occur as a result of prepayment and arrears is considered in this model. Additionally, in the estimation of construction cost in the phase of business feasibility review, real construction prices instead of official prices are applied to enhance accuracy of cash outflow forecast. The proportion of payment made by a bill and changes in payment date caused by rescheduling of a bill are also factored in to estimate cash outflow. This model would contribute to achieving accurate cash flow forecast that better reflect real situation and to enhancing efficiency in capital management by giving a clear picture with regard to the demand and supply timing of capital.

  • PDF

Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date (정식일 이동에 따른 배추 잠재수량성의 시공간적 변화 전망)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.298-306
    • /
    • 2016
  • Planting date shift is one of the means of adapting to climate change in Kimchi Cabbage growers in major production areas in Korea. This study suggests a method to estimate the potential yield of Kimchi Cabbage based on daily temperature accumulation during the growth period from planting to maturity which is determined by a plant phenology model tuned to Kimchi Cabbage. The phenology model converts any changes in the thermal condition caused by the planting date shift into the heat unit accumulation during the growth period, which can be calculated from daily temperatures. The physiological maturity is estimated by applying this model to a variable development rate function depending either on growth or heading stage. The cabbage yield prediction model (Ahn et al., 2014) calculates the potential yield of summer cabbage by accumulating daily heat units for the growth period. We combined these two models and applied to the 1km resolution climate scenario (2000-2100) based on RCP8.5 for South Korea. Potential yields in the current normal year (2001-2010) and the future normal year (2011-2040, 2041-2070, and 2071-2100) were estimated for each grid cell with the planting dates of July 1, August 1, September 1, and October 1. Based on the results, we divided the whole South Korea into 810 watersheds, and devised a three - dimensional evaluation chart of the time - space - yield that enables the user to easily find the optimal planting date for a given watershed. This method is expected to be useful not only for exploring future new cultivation sites but also for developing cropping systems capable of adaptation to climate change without changing varieties in existing production areas.

Slope Failure Predicting Method Using the Monitoring of Volumetric Water Content in Soil Slope (흙사면의 체적함수비 계측을 통한 사면파괴 예측기법 개발)

  • Kim Man-Il;Nishigaki Makoto
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.135-143
    • /
    • 2006
  • This study presents the results of a series of laboratory scale slope failure experiments aimed at clarifying the process and the condition leading to the initiation of rainfall-induced slope failures. For the evaluation of hydrologic response of the model slopes in relation the process of failure initiation, measurements were focused on the changes in volumetric water content during the initiation process. The process leading to failure initiation commences by the development of a seepage face. It appears reasonable to conclude that slope failures are a consequence of the instability of seepage area formed at the slope surface during rainfall period. Therefore, this demonstrates the importance of monitoring the development seepage area for useful prediction about the timing of a particular failure event. The hydrologic response of soil slopes leading to failure initiation is characterized by three phases (phase I, II and III) of significant increase in volumetric water content in association with the ingress of wetting front and the rise of groundwater level within the slope. The period of phase III increase in volumetric water content can be used to initiate advance warning towards a failure initiation event. Therefore, for the concept outlined above, direct and continuous monitoring of the change in volumetric water content is likely to provide the possibility for the development of a reliable and effective means of predicting the occurrence of rainfall-induced slope failures.