• 제목/요약/키워드: Condensing pressure

검색결과 104건 처리시간 0.02초

축열식 촉매 산화(RCO) 반응의 성능 최적화를 위한 전산 해석 (Numerical Calculations for the Optimal Performance of Regenerative Catalytic Oxidation(RCO))

  • 정유진;이재정;정종현;김진욱;손병현
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5384-5391
    • /
    • 2011
  • 본 논문에서는 RCO 반응기의 최적 조업 조건을 도출하고자 현재 조업 중인 RTO 반응기 촉매층의 압력분포, 유속분포, 유선장, 체류시간, 온도분포 등에 대하여 분석하였고 최적의 조업 조건을 도출하기 위한 전산유체해석을 수행하였다. 전산 해석 결과, 현재 조업중인 반응기 촉매층의 축열재로 인한 압력손실은 크지 않은 것으로 나타났으며, 세라믹 필터 이후 유속은 1.8~2.7 m/s로 특별한 편류없이 비교적 안정적 유속분포를 보이고 있었다. 기류분포를 좀 더 개선하려고 한다면 설비 내부에 플래넘과 촉매층 접속 구간 연장 등의 방법을 고려할 수 있을 것으로 판단된다. 그러나 기류 안내판이나 다공판 부착 등의 방법은 큰 효과는 없을 것으로 나타났다.

세관을 사용한 응축기에서 R-22의 대체냉매인 R-410A의 응축 열전달 특성 (Condensation Heat Transfer Characteristics of R-410A as an Alternative R-22 in the Condenser with Small Diameter Tubes)

  • 손창효
    • 청정기술
    • /
    • 제13권2호
    • /
    • pp.151-158
    • /
    • 2007
  • 프레온계 냉매의 지구온난화와 오존층파괴 문제로 인해 대체냉매로서 R-410A가 주목을 받고 있다. 이러한 대체냉매를 세관에 적용시킬 경우 효율을 향상시킬 뿐만 아니라 지구환경에 미치는 영향을 감소시키고, 대기를 청정하게 만드는 기술 및 방안으로 각광 받고 있다. 따라서 본 연구에서는 R-22의 대체냉매로 각광받고 있는 R-410A의 세관응축기 내에서의 응축열전달 특성에 대해 실험적으로 고찰하고자 하였다. 실험장치는 유동양식, 열전달, 압력강하 특성을 파악할 수 있도록 제작되었고, 주요 구성품은 냉매펌프, 증발기, 응축기(시험부), 사이트 글라스(가시화부), 압력탭, 측정장치 등이다. 시험부의 내관은 내경 3.36 mm와 5.35 mm인 수평평활 동관이다. 실험변수들의 범위로서 질량유속 $200{\sim}500\;kg/m^2s$이고, 열유속은 $1.0{\sim}2.4\;kW$이다. R-410A의 응축열전달 계수가 R-22에 비해 최대 5% 정도 높은 것을 알 수 있었다. 세관 내 R-410A와 R-22의 유동양식은 환상류 영역이 지배적으로 나타남을 관찰하였고, 건도가 0.2 이하인 영역에서는 성층류가 나타남을 확인할 수 있었다. 내경 3.36 mm의 압력강하가 내경 5.35 mm에 비해 $30{\sim}50%$정도 높았다. 종래의 응축 열전달 상관식과 실험데이터를 비교한 결과, Fujii의 상관식과 최대 40%이내에서 일치하였다.

  • PDF

Shell 석탄가스화 복합발전 시스템의 성능해석 연구 (Performance Analysis of Shell Coal Gasification Combined Cycle systems)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • 에너지공학
    • /
    • 제6권1호
    • /
    • pp.104-113
    • /
    • 1997
  • 본 연구에서는 상용공정모사기인 ASPEN PLUS를 이용하여 건식탄공급, 산소사용 분류층 가스화기인 Shell가스화공정, 저온가스정제공정, GE MS7001FA가스터빈, 삼압.자연순환식 폐열회수보일러, 재열복수식 증기터빈 및 극저온 산소분리공정을 채용한 IGCC시스템에 대하여 성능해석 모델을 개발하고 시스템 성능해석을 위한 민감도분석을 수행하였다. 본 모델의 적정성은 설계조건에서 대상탄을 이용한 정상상태 성능해석 결과를 타 시뮬레이션 결과와 비교함으로서 검증하였다.$^{1)}$ . Illinois#6탄을 대상으로 수행한 시뮬레이션 결과는 투입되는 탄에 함유된 수분의 양이 증가함에 따라 가스화기의 온도가 감소하며, 회분 및 황이 많은 경우에 현열손실이 증가하여 시스템 효율이 감소하였다. 개발된 모델을 이용하여 가스화기의 운전압력, 증기/석탄비율 및 산소/석탄비율에 따르는 시스템의 민감도분석을 수행한 결과 운전압력 증가에 따라 가스화기 노내온도가 상승하며, 가연성가스(CO+H2) 생성율이 감소하였다. 증기/석탄비율 변화분석에서는 공급증기의 양을 변화시키면 가연성가스의 최고생성점이 보다 낮은 산소/석탄비율에서 나타남을 알 수 있었다. 또한 산소/석탄비율 변화분석에서는 증기/석탄 공급비율 0.2에서 산소/석탄 공급비율이 0.77인 경우에 가장 최적의 운전조건임을 알 수 있었다.

  • PDF

환경보건지표를 이용한 지역 환경보건수준 평가 사례연구 (A Case Study on the Evaluation of Environmental Health Status based on Environmental Health Indicators)

  • 정순원;이영미;홍성준;장준영;유승도;최경희;박충희
    • 한국환경보건학회지
    • /
    • 제42권5호
    • /
    • pp.302-313
    • /
    • 2016
  • Objectives: This study was conducted to assess environmental health status on a local scale using environmental health-related indicators. It demonstrated the possibility of using a structural equation model, a methodological approach to provide synthesized information. Methods: Eighteen indicators were selected from official statistical data published by local governments. Each environmental health-related indicator was classified according to the PSR (pressure-state-response) model. Aggregation methods were performed using principal component analysis and fuzzy sets. Results: The five principal components were classified through principal component analysis (PCA) and obtained eigenvalues >1.0 from the initial 18 indicators. The aggregated index was obtained by condensing the original information into two broad and simple categories through fuzzy sets. Conclusion: This could be useful in that the aggregation procedure may provide a basis for establishing environmental health policies and a decision-making process. However, the availability and quality of indicators, assessment of aggregation method bias, choice of weighted scores for indicators, and other factors should be examined in future studies.

증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증 (Verification of SPACE Code with MSGTR-PAFS Accident Experiment)

  • 남경호;김태우
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성 (Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers)

  • 박윤철;김상혁;김지영
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

곡물냉각기의 개발 (Development of a New Commercial Grain Cooler)

  • 김동철;김의웅;금동혁;한종규
    • 한국식품저장유통학회지
    • /
    • 제11권2호
    • /
    • pp.250-256
    • /
    • 2004
  • 국내의 기상조건 및 벼의 수확후 처리여건에 적합한 곡물냉각기를 개발하고, 냉각능력, 재열능력, 가열능력, 소요전력 및 성능계수 등의 성능을 측정하여 설계조건에 적합한지를 분석하였다. 그 결과를 요약하면 다음과 같다. 압축기 무부하전자변과, 재열기 및 증발기에 고온고압의 냉매가스를 공급하여 냉각능력을 0∼100%까지 제어할 수 있고, 온도 5$^{\circ}C$이상, 상대습도 54∼95%의 정온정습 공기를 발생할 수 있는 1일 최대 벼 200톤을 냉각할 수 있는 곡물냉각기를 개발하였다. 이 곡물냉각기의 최대냉각능력은 35,284㎉/hr, 송풍량 및 정압은 각각 120㎥/min, 279mmAq이었으며, 재열기를 통한 냉각공기의 최대 온도상승 및 상대습도의 저하범위는 각각 7.6∼8.6$^{\circ}C$, 34.5∼41.0%이었으며, 최대가열능력은 5.6$^{\circ}C$이었다. 또한, 최대 소요동력은 22.8㎾이었으나, 압축기의 무부하 전자변이 작동될 때는 총소요동력의 33.3%, 압축기 소요축동력의 44.7%가 절약되는 것으로 나타났으며, 제어조건에 따라 전체소요동력의 26.7~33.3%정도가 절약되는 것으로 나타났으며, 냉동시스템의 성능계수는 과냉각으로 인해 표준냉동사이클하에서의 4.0보다 높은 4.71이었으며, 전성능계수는 1.8로 나타났다.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.