• 제목/요약/키워드: Condensing Pressure Drop

검색결과 30건 처리시간 0.024초

마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 - (Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer -)

  • 곽경민;장재식;배철호;정모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF

자동차용 평행류 응축기의 열성능 모델링 (Thermodynamic Modeling of Parallel Flow Condenser for Automotive Air Conditioning System)

  • 김일겸;고재윤;박상록;임장순
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.771-779
    • /
    • 2001
  • In this study, a simulation program has been developed to predict the performance of a parallel flow condenser of an air conditioning system for an automobile. The well-known correlations for he heat transfer rates and the pressure drops are included in this model. It is fond that the numerical model can predict the heat transfer rate and the pressure drop accurately. As the condensing pressure increases of fixed air inlet temperature, the heat transfer rate increases and the pressure drop decreases. The effect of he degree of subcooling on the performance of the condenser is greater than that of the degree of super-heating because the ratio of the area occupied by he tow-phase refrigerant the total area is significantly affected by he degree of subcooling rather than the degree of superheating.

  • PDF

응축형 가스보일러 열교환기의 열전달특성에 관한 수치적 연구 (The Numerical Study on the Heat Transfer Characteristics of Heat Exchanger for Condensing Gas Boiler)

  • 김석철;금성민;이창언
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1853-1860
    • /
    • 2001
  • Characteristics of fluid flow and heat transfer in a tube with disk and annular baffle for heat exchanger of condensing boiler was numerically studied. The STAR-CD code was used to solve the governing equations and the temperature and flow fields were investigated. The interval between tube and annular baffle, height and diameter of baffle were selected as important design parameters, and the effects of these parameters on heat transfer and fluid flow were studied. As a result, in the case of with interval, the pressure was decreased, but heat transfer was increased. Heat transfer was slowly increased as the size of disk and annular baffle were increased and the distance between baffles were decreased. The pressure drop was rapidly changed fur diameter and size of disk and annular baffle. In addition, it was desirable that optimal conditions to design heat exchanger were about B$\_$a/R=0.5, L/R=1.

세관내 R-22 대체냉매의 응축압력강항에 관한 연구 (The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 오후규;손창효;최영석;김기수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.

증발기의 압력강하에 대한 상대습도의 영향 (Effects of Relative Humidity on the Evaporator Pressure Drop)

  • 김창덕;강신형;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Performance Evaluation of Double-Tube Condenser using Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane)

  • Lee, Sang-Mu;Lee, Joo-Dong;Koyama, Shigeru;Park, Byung-Duck
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.25-33
    • /
    • 2007
  • The investigation has been made into the prediction of heat exchange performance of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and micro-fin tube. Under various heat transfer conditions, mass flux, pressure drop and heat transfer coefficient of the mixed refrigerants were calculated using a prediction method, when the length of condensing tube, total heat transfer rate, mass flux and outlet temperature of coolant were maintained constant. Also, the predicted results were compared with those of HCFC22. The results showed that the mixed refrigerants of Propane/n-Butane or Propane/i-Butane could be substituted for HCFC22, while the pressure drop and overall heat transfer coefficient of the refrigerants were evaluated together.

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

마이크로채널과 핀 튜브 열교환기를 적용한 가정용 에어컨디셔너의 성능 평가 (Evaluation of Performance of a Residential Air-Conditioning System Using Microchannel and Fin-and-Tube Heat Exchanger)

  • 윤린
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.28-35
    • /
    • 2007
  • In this study the seasonal performance of a residential air conditioning system having either a fin-and-tube condenser or a microchannel condenser is experimentally investigated. A commercially available 7 kW capacity residential air conditioning system having a fin-and-tube condenser served as the base system. The test results show that the system with a microchannel heat exchanger has a reduced refrigerant charge amount of 10%, the coefficient of performance is increased by 6% to 10%, and the SEER is increased by 7% as compared with those of the base system. Moreover, the condensing pressure of the system is decreased by 100 kPa and the pressure drop across the condenser is decreased by 84%. The microchannel heat exchanger enhances the SEER of the residential air conditioning system by providing better heat transfers at reduced pressure drops.

터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여- (A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop-)

  • 한규일;김시영;조동현
    • 수산해양교육연구
    • /
    • 제6권1호
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구 (A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser)

  • 한규일;조동현
    • 수산해양기술연구
    • /
    • 제34권2호
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF