• 제목/요약/키워드: Condensing Heat Transfer Coefficient

검색결과 42건 처리시간 0.021초

외표면 형상이 원관의 응축열전달에 미치는 영향 (Experiments on the Condensation Heat Transfer Enhancement of Horizontal Circular Tube with Threaded Outside Surface)

  • 이진호;남임우
    • 대한설비공학회지:설비저널
    • /
    • 제17권3호
    • /
    • pp.230-237
    • /
    • 1988
  • An experiment was carried out to study the condensation heat transfer enhancement of horizontal circular cylinders with varying outside surface configurations. The refrigerant used is Freon-22 and the test condensing temperature is 34.1C. Pin-finned tube shows about 2.5-3.5 times higher overall heat transfer coefficient compared to that of smooth surface tube, thus has larger encomic benifit for condenser design. The condensation heat transfer coefficient was shown to increase as the fin-pitch of the pin-finned tube decreases for film Reynolds number larger than 100.

  • PDF

Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구 (Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger)

  • 서무교;박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

LNG FPSO 액화공정에 적용되는 플레이트 핀 열교환기의 열전달 특성 (Heat Transfer Characteristics of Plate-fin Heat Exchanger Using LNG FPSO Liquefaction Process)

  • 유선일;김현우;정영권;윤정인;박승하;김창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.798-805
    • /
    • 2010
  • LNG FPSO 액화 플랜트와 같은 초저온 분야에서 플레이트 핀 열교환기의 국내 연구 실적은 전무한 상태이다. 본 연구에서는 플레이트 핀 열교환기의 독자적 기술을 확보하기 위해 응축 열전달 특성을 이론 및 실험적으로 검증하였다. 시뮬레이션 결과 Plain fin을 제외한 Serrated, Wavy fin은 압력 69bar, 온도 $-140^{\circ}C$에서 응축되었고, 국소열전달계수는 Serrated, Wavy, Plain fin 순으로 높게 나타났다. 실험결과는 정상상태에서 10분간 데이터를 획득하였고 시뮬레이션 데이터값과 12% 미만의 오차범위를 만족하였다.

낮은 핀을 가진 수평관의 응축액 억류에 관한 연구 (A Study on the condensate Retention at Horizontal Integral-Fin tubes)

  • 한규일;조동현
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF

냉장고 사이클 특성에 미치는 열손실량의 영향 (Effect of heat Leak on Cycle Characteristics of Refrigerator)

  • 신진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.871-879
    • /
    • 1998
  • The refrigerator consists of many components such as compressor condenser expansion valve evaporator and the cabinet which filled by urethane foam. In this paper the heat leakage of refriger-ator is measured by the new experiment method which is different from a present method, The devi-ation of the UA(overall heat transfer coefficient times area) between the simulation and experiments is about 7-8%. Using the modeling of various components of refrigeration system a performance analysos of CFC 12 and HFC 134a is performed numerically on the UA. As the results of this study according to increase the heat leakage the refrigeration load and mass flow rate of refrigerant are increased. And the increase of the mass flow rate results in the increase of the condensing and evapo-rating temperature. Therefore according to increase of the heat leakage the COP leads to increase because the increase of refrigeration capacity is larger than the increase if compressor power.

  • PDF

동방향 성층이상유동에서의 직접접촉 응축현상에 대한 해석 (An Analysis on Direct-Contact Condensation in Horizontal Cocurrent Stratified How of Steam and Cold Water)

  • Lee, Sukho;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.130-140
    • /
    • 1992
  • 동방향 성층이상유동에서의 직접적촉 응축현상을 일차원 모델인 RELAP5/MOD2와 /MOD3를 이용하여 해석하였으며, 해석결과를 Northwestern의 실험결과와 비교·검토하였다. 해석결과 RELAP5의 공유열전달 모델은 동방향 성층이상유동에서 응축율을 비교적 잘 예측하고 있다. 그러나 공유접촉면에 파형이 생기는 경우는 물경계두께 및 국부 열전달계수는 유사한 범위로 일치할분 현상을 예측하는데 상당한 차이가 있다.

  • PDF

R-502의 대체냉매를 사용한 냉동시스템의 성능 및 열전달 특성 (Performance and heat transfer characteristics of refrigeration system using R-502 alternatives)

  • 박창대;김민수;노승탁
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.624-632
    • /
    • 1999
  • In order to replace CFC-502 which has been widely used in transportation and low temperature refrigeration system, performance tests using HFC-407A, HFC-404A and HFC-507 have been carried out. Measurements were conducted at two different condensing temperatures of $43.3^{\circ}C$and $54.5^{\circ}C$ for each refrigerant. System performance characteristics and heat transfer characteristics of each refrigerant were obtained at several compressor speeds and evaporating temperatures ranging from$-25^{\circ}C$ to $-10^{\circ}C$ Test results show that the use of tested alternative refrigerants without changing system components offers the potential performance improvement of a refrigeration system.

  • PDF