• Title/Summary/Keyword: Condenser heat recovery

Search Result 32, Processing Time 0.018 seconds

A Study on the Experimental Measurements and Its Recovery for the Rate of Boil-Off Gas from the Storage Tank of the CO2 Transport Ship (CO2 수송선 저장탱크의 BOG 측정 실험 및 회수에 관한 연구)

  • Park, Jin-Woo;Kim, Dong-Sun;Ko, Min-Su;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • $CO_2$ is generated by the combustion reaction, when getting the energy from fossil fuel. If the carbon dioxide emissions increases more, the global warming problem will become more serious. CCS (carbon capture storage) needs to be developed for the prevention of this. When liquefied $CO_2$ is transported, BOG (boil-off gas) is generated because of several problems. In the study, by injecting liquefied $CO_2$ in two tanks which contains $40m^3$each, the amount of BOG and its composition were measured during 30 days when generating pressure changes and external heat, loading, unloading. In result, 16,040 kg of BOG was generated and the composition has been found out to be 99.95% $CO_2$ and 0.05 % $N_2$. Also, we conducted simulation process for reliquefaction of generated BOG with vapor compression cycle using the PRO/II with PROVISION version 9.2. As a result, the refrigeration cycle of the total circulation flow rate was 42.07 kg/h and the condenser utility consumption was 48.85 kg/h.

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.