• Title/Summary/Keyword: Condensed Joint Matrix

Search Result 4, Processing Time 0.025 seconds

Application of Condensed Joint Matrix Method to the Joint Structure of Vehicle Body (축약 행렬법을 적용한 차체 결합부 해석)

  • 서종환;서명원;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 1998
  • The joint characteristics are necessary to be determined in the early stage of the vehicle body design. Researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle struct- ure were expressed as condensed forms from the full joint stiffness and mass matrix. The condensed joint stiffness and mass matrix were applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, those were applied to center pillar and full vehicle body to validate the practical application.

  • PDF

Analysis Of the Joint Structure of the Vehicle Body by Condensed Joint Matrix Method

  • Suh, Myung-Won;Yang, Won-Ho;Jonghwan Suhr
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1639-1646
    • /
    • 2001
  • It is often necessary that the joints characteristics should be determined in the early stage of the vehicle body design. The researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle structure were expressed as the condensed matrix forms from the full joint stiffness matrix. The condensed joint stiffness matrix was applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, it was applied to the real center pillar model and the full vehicle body in order to validate the practical application.

  • PDF

IMMUNOHISTOCHEMICAL PROFILE OF BASIC FIBROBLAST GROWTH FACTOR(bFGF) IN GROWING RAT T-M JOINT (성장 중인 흰쥐 악관절의 basic fibroblast growth factor(bFGF) 분포에 관한 면역조직화학적 연구)

  • Kim, Jong-Ha;Lee, Sang-Chull
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was designed to localize the distribution of basic fibroblast growth factor(bFGF) in the developing rat condylar region and to elucidate the associated function of bFGF in the condyle development. The condyles of temporomandibular joint of Sprague-Dawley rats (27g of weight) were used. The tissues were examined with electron microscope and immunohistochemical method. The results were as follows: 1. The developing condylar region are divided in to 5 zones apparently: proliferative, maturation, hypertrophic, calcifying, and ossification zones. 2. The cells in the proliferative zone are condensed and have under-developed cell organells in the cytoplasm. This zone shows a strong immunoreactivity of bFGF. 3. The cells in the maturation zone are typical chondroblasts showing well-developed cell organells and round nucleus. The cartilaginous matrix does not show the immunoreactivity of bFGF, while the chondroblasts show the immunoreactivity. 4. The cells in the hypertrophic zone show hypertrophic change having the degenerated cell organelles and small nucleus. There are no immunoreactivity of bFGF in this zone except the nucleus and endoplasmic region showing mild immunoreactivity. 5, The cells in the calcifying zone show hypertrophic change and cell organelles are disappeared. The cells are surrounded by the calcified cartilaginous matrix. There are no immunoreactivity of bFGF in this zone except the endoplasmic region showing mild immunoreactivity. 6. In the zone of bone formation, chondroblasts are disappeared. Newly differentiated osteoblasts secreting osteoid around the calcified cartilaginous matrix. The bone marrow shows the immunoreactivity of bFGF, while the bone matrix does not show the immunoreactivity of bFGF.

  • PDF

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF