• Title/Summary/Keyword: Concrete-filled

Search Result 983, Processing Time 0.02 seconds

A study on nonlinear analysis and confinement effect of reinforced concrete filled steel tubular column

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Yu, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.727-743
    • /
    • 2015
  • According to former studies, the mechanical properties of reinforced concrete filled tubular steel (RCFT) columns differed greatly from that of concrete filled steel tubular (CFT) columns because of interaction of inserted reinforcement in RCFT. Employing an experiment-based verification policy, a general FE nonlinear analysis model was developed to analyze the mechanical behavior and failure mechanism of RCFT columns under uniaxial compression. The reasonable stress-strain relationships were suggested for confined concrete, reinforcements and steel tube in the model. The mechanism for shear failure of concrete core was found out in the numerical simulation, and a none-conventional method and equation for evaluating the confinement effect of RCFT were proposed.

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression

  • Zhu, W.C.;Ling, L.;Tang, C.A.;Kang, Y.M.;Xie, L.M.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.257-273
    • /
    • 2012
  • Based on the heterogeneous characterization of concrete at mesoscopic level, Realistic Failure Process Analysis ($RFPA^{3D}$) code is used to simulate the failure process of concrete-filled tubular (CFT) stub columns. The results obtained from the numerical simulations are firstly verified against the existing experimental results. An extensive parametric study is conducted to investigate the effects of different concrete strength on the behaviour and load-bearing capacity of the CFT stub columns. The strength of concrete considered in this study ranges from 30 to 110 MPa. Both the load-bearing capacity and load-displacement curves of CFT columns are evaluated. In particular, the crack propagation during the deformation and failure processes of the columns is predicted and the associated mechanisms related to the increased load-bearing capacity of the columns are clarified. The numerical results indicate that there are two mechanisms controlling the failure of the CFT columns. For the CFT columns with the lower concrete strength, they damage when the steel tube yields at first. By contrast, for the columns with high concrete strength it is the damage of concrete that controls the overall loading capacity of the CFT columns. The simulation results also demonstrate that $RFPA^{3D}$ is not only a useful and effective tool to simulate the concrete-filled steel tubular columns, but also a valuable reference for the practice of engineering design.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

  • Bahrami, Alireza;Badaruzzamana, Wan Hamidon Wan;Osmanb, Siti Aminah
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.383-398
    • /
    • 2011
  • This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength $f_c$ and cold-formed steel sheet yield stress $f_{yp}$ on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength $f_c$ of the concrete and yield stress $f_{yp}$ of the cold-formed steel sheet influence the performance of the columns significantly.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT) (대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.435-445
    • /
    • 2015
  • Concrete filled steel tube(CFT), which has superior ductility and strength, is used for building column, bridge piers of ocean structure. Shear design equations of CFT existing in structural design provisions are excessively conservative. It has an effect on constructability and the economics of CFT. However, to suggest the reasonable shear design equation, experimental studies on the shear capacity of CFT have been rarely conducted. This study is analytical research to suggest improved shear design equations of large-diameter concrete-filled steel tubes. This analytical research was conducted to apply finite element analysis model of CFT based on the prior research. It was verified by comparison with prior test results. The verified model was used for parameter studies to estimate the influence of overhang length, concrete compressive strength and diameter-thickness ratio on shear strength.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.