• Title/Summary/Keyword: Concrete waste management

Search Result 112, Processing Time 0.023 seconds

Development of an Acceptance Criteria Implementation Flow Chart for verifying the Disposal Suitability of Radioactive Waste from Decommissioning of Nuclear Power Plants (원자력발전소 해체 방사성폐기물 처분 적합성 검증을 위한 인수기준 이행 흐름도 개발)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Sung, Suk Hyun;Park, Hae Soo;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • When the decommissioning of South Korea nuclear power plants is promoted in earnest with the permanent shutdown of Kori Unit 1 in 2017, a large amount of various types of radioactive waste will be generated. For minimal generation and safe management of decommissioning waste, the waste should be made by appropriate classification of the dismantling waste characteristics in accordance with physical, chemical and radiological characteristics to meet the acceptance criteria of disposal facilities. Replacing the preliminary inspection at the site for the compliance of the waste acceptance criteria (WAC) of medium and low-level radioactive waste with the generator's own radioactive waste certification program (WCP), from the perspective of disposal, the optimization of waste management at the national level contributes to the efficient availability of disposal, such as the processing of non-conforming radioactive wastes at the site. To this end, it is important to evaluate radioactivity in each system and area such as nuclear reactors before decommissioning is carried out in earnest, and the prior removal of harmful wastes is important. From waste collection to waste disposal, decommissioning waste should be managed at each stage in consideration of the acceptance criteria of disposal facilities to minimize the generation of non-conforming waste.

Assessment Of Radionuclide Release Rates From The Engineered Barriers And The Quantification Of Their Uncertainties For A Low- And Intermediate-Level Radioactive Waste Repository (방사성폐기물처분장 인공방벽으로부터의 핵종유출률 평가 및 불확실도 정량화)

  • Cho, W.J.;Lee, J.O.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-89
    • /
    • 1994
  • The radionuclide release rates from the engineered barrier composed of concrete structure and clay-based backfill in a low and intermediate level waste repository were assessed. Four types of release pathway were considered, and the contribution of each pathway to the total release were analyzed. To quantify the effect of uncertainties of input parameter values on the assessment of radionuclide release rates, the Latin Hypercube sampling method was used, and the resulting release rate distribution were determined through a goodness-of-fit test. Finally, the ranges of maxi-mum release rates ore estimated statistically with a confidence level of 95%.

  • PDF

Identification of Factors Influencing the Operability of Precast Concrete Construction Shipment Request Forms

  • Jeong, Eunbeen;Jang, Junyoung;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.145-152
    • /
    • 2022
  • Recently, interest in the precast concrete (PC) construction method has been increasing. The PC construction process consists of i) design, ii) production, iii) transportation, and iv) installation. A PC field manager at the site submits a shipment request form to the factory one to three days before the installation of the PC component. Numerous matters should be considered in writing a shipment request form. Incorrect shipment request forms may cause standby resources, waste of resources, premature work conclusion, or excessive work. These issues can lead to an increase in construction costs, replanning of PC component installation, or rework. In order to prevent such problems, PC component installation should be simulated based on the shipment request form. Accordingly, this study aims to identify factors influencing the operability of shipment request forms for PC construction. To this end, this study derived factors influencing i) initiation of the activity, ii) addition or deletion of activities, and iii) an increase or decrease in the activity execution time. As a result, this study identified flow, the features of PC components, condition of PC components, unloading location, installation location, input equipment and labor, number of anchors, number of supports, weather, strike, and accident. Further studies should verify the factors derived in this study based on focus group interviews.

  • PDF

Disposal Process Improvement of Construction Waste through Identifying Factors Obstructing Reduction and Recycle of Construction Wastes (주요 건설폐기물의 재활용 저해요인 도출을 통한 현장 건설폐기물 처리 프로세스 개선 방안)

  • Kim, Jae-Moon;Kim, Jee-Hye;Cha, Hee-Sung;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • On account of increasing interest of substantiality in these day, it is needed to make an effort to establish an environmentally sustainable production system for the construction works. Although practical affairs and researches are in progress to reduce and recycle construction wastes, as a result of a research, there are still obstructive factors on waste reduction and recycling which they don't interact efficiently between waste disposal process of the construction area and waste disposal company. As a plan to revitalize reduction and recycling of construction wastes, this research focuses on finding obstructive factors and giving solutions to reduce and recycle construction wastes which comes from construction process and construction industries. To meet the needs of the research, firstly relatively significant construction wastes (concrete, soil, brick, block, asphalt, plastic, lumber) were identified. On site level interviews with management of disposal companies and construction sites were conducted as well, focusing on typical waste disposal process. Throughout this interviews, obstructive factors were conducted. A result of the research, the authors suggest an improved approach on disposal and recycling for construction waste by prioritizing the identified factors and ranking the importance level of each factor. And, by identifying factors obstructing reduction and recycle of construction wastes, this research suggests improved disposal process of construction waste.

Waste Elimination in Construction Process using Value Stream Analysis - Focused on Waste Elimination of Re-bar Works (가치흐름 분석을 통한 건설프로세스의 낭비제거 방안)

  • Mun Jeong-Mun;Kim Chang-Duk;Park Dong-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.416-421
    • /
    • 2001
  • The domestic reinforcement concrete works have mainly worked the process of re-bar fabrication/assembly on site and re-bar works affected by structural safety, durability, and schedule with form work. Accordingly, This study analyzes the process of re-bar fabrication/assembly on site to apply lean production principles to construction Value Stream Analysis(VSA) is analyzed into value-adding activity and non-value-adding activity on construction process through value analysis and Value Stream Mapping(VSM). In the results, non-value-adding activity generates waste such as the activity steps, labors, equipments, materials, time, and so on. Additionally, push-driven production is investigated making low productivity from the overproduction and so on. To resolve the problems in the process, The purpose of this paper eliminates waste factor through maximizing the value-adding activity generating value added and minimizing non-value adding activity. Particularly, it makes flow production and pull-driven production through minimizing work-in-process(WIP ).

  • PDF

Algorithm for Simulation Program to Revitalization Site-Recycling (건설폐기물 재활용 활성화를 위한 시뮬레이션 프로그램 알고리즘 개발)

  • An, Yang-Jin;Lee, Jae-Sung;Lee, Kyoung-Hee;Bae, Kee-Sun;Jung, Jong-Suk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.712-715
    • /
    • 2008
  • The construction wastes rapidly increase because of redevelopment, the development of new urbanization of large-scale land development, the expansion of social infrastructure. As one of the ways to recycle construction waste to be recycled directly. This case, recycling of materials uses up most of recycled aggregate can be secured reliably. As a result, a decrease in the amount of materials brought in or taken out of the site, the cost of transportation, carbon dioxide emission, and traffic can be reduced. Economic, social and environmental effects can be expected. Therefore, this study of the construction waste "Site-Recycling" to enable the construction waste from the occurrence of "site-recycling" that can be processed in batches to apply the "Site-Recycling Simulation Program" is to develop the algorithms.

  • PDF

An Economic Analysis of Recycling for Waste Concrete;A Case study at Hosing Development District (폐콘크리트의 현장재활용 시 경제성 분석;택지개발사업지구를 중심으로)

  • Ko, Eun-Jung;Lee, Jae-Sung;Jung, Jong-Suk;Jun, Myoung-Hoon;Lee, Do-Heun;Bang, Jong-Dae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.198-203
    • /
    • 2006
  • Recently, the construction wastes increase rapidly due to the revitalization of reconstruction and redevelopment, the development of new urbanization of large housing development, the expansion of social infrastructure, and so on. To solve rapid increase of construction waste, the government established "the rule on the promotion of recycling of construction waste" in December, 2003. According to the rule, construction wastes can be recycled by either processing on commission or discharger of construction waste. However, most of construction waste can be recycled by processing on commission. One of the most reason is that it is difficult for proving economic effect of site recycling by discharger. This study investigated and analyzed in a generation and disposal process, status of recycling, and procedure and process of site recycling of construction waste. Also, this study proved the validation of site recycling for construction waste as economic efficiency is analyzed through the case study of site recycling at large housing development district. The results of this study can utilize the establishment of policy and basic data of feasibility for site recycling of construction waste.

  • PDF

Use of Heavy Oil Fly Ash as a Color Ingredient in Cement Mortar

  • Mofarrah, Abdullah;Husain, Tahir
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • Heavy oil fly ash (HOFA) is a byproduct generated by the burning of heavy fuel oil. Chemical analysis showed that HOFA is mainly composed of unburned carbon with a significant amount of heavy metals. Due to toxicity, management of this waste poses a challenge to the industry personal. The present study investigates the possible use of HOFA as a black pigment or admixture in cement mortar aiming to produce ornamental brick. In order to investigate the change of cement mortar strength when HOFA is added, the standard compressive strength test with 50 mm cubes was performed. The results showed that the addition of 2-5 % of HOFA in cement mortar does not affect its strength. The leaching behavior of trace elements within HOFA and HOFA mixed mortar were investigated through laboratory batch leaching experiments. The results confirmed that HOFA can be utilized as a black pigment in ornamental brick, which is environmentally safe and provides good balance between color and brick properties.

A Study on the Inventory Estimation for the Activated Bioshield Concrete of KRR-2 (연구로 2호기 방사화 수조 콘크리트의 재고량 평가에 관한 연구)

  • Hong, Sang Bum;Seo, Bum Kyoung;Cho, Dong Keun;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.202-207
    • /
    • 2012
  • The radioactivity inventory significantly affects all steps of decommissioning projects including planning, cost estimation, risk assessment, waste management and site remediation. The decommissioning project of the KRR-2 was completed in 2009 and a large amount of activated concrete waste was generated. The bioshield concrete, containing minute amount of impurity elements, was activated by neutron reaction during the operation of the reactor. A variety radionuclides was generated in the concrete, including $^3H$, $^{14}C$, $^{55}Fe$, $^{60}Co$ $^{63}Ni$, $^{134}Cs$, $^{152}Eu$ and $^{154}Eu$. In this paper, the comparison between the calculated results and previous measured results was carried out to estimate the inventory of the bioshield concrete of the KRR-2. The combined computer codes of MCNP5 and ORIGEN 2.1 for calculation of the distribution of neutron flux, cross-section and generation of radionuclides were used. The results were shown that 99.8% of the total radioactivity of $^3H$, $^{55}Fe$, $^{60}Co$ and $^{152}Eu$ in the bioshield concrete 12 years after shutdown. The effects on the variation of inventory were analysed depending on the operation periods and the cooling times in the bioshield concrete.

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.