• Title/Summary/Keyword: Concrete properties

Search Result 5,711, Processing Time 0.033 seconds

A Study on the Utilization of Coal Fired Fly-ash as Microfine Grouting Materials (초미립자 지반주입재로서 플라이애쉬의 적용성에 관한 연구)

  • 천병식;김진춘
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.113-125
    • /
    • 1998
  • At the end of 1997 about 3 million tons of coal ash was produced as byproducts from the coal fired electrical power plants in Korea. Only about 27% of that byproducts was utilized as the admixtures of cement and concrete industry. But the large quantity of coal fired fly-ash has been used as the soil improvement materials in other countries. So the aim of this study is the estimation of the applicability of the coal fired fly-ash as microfine grouting materials by admixing the superfine particles which were separated from the coal fired fly-ash for the higher values. The 6 types of specimens were manufactured in the laboratory for the purpose of estimating the chemical and physical properties of cement and grouts. These specimens consisted of 2 specific surfaces of 6, 000 and 8, 000$cm^2$/g in Elaine method. And these specimens are devide into 3 ratios (30%, 50%, 70%) of fly-ash by weight. From the estimated properties of the coal fired fly-ash microflne cements and grouts, 50% fly-ash is the most suitable ratio for grouting materials. However, further study of durability is necessary for using fly-ash grouts practically at the field projects. The higher content of the unburned carbon of fly-ash increases the thinner layer of carbon on the surface of solution of grouts, and requires more quantity of surface active agent. As a results of this study, it is found that the microfine fly-ash is very useful as a good grouting material if 50% of fly-ash is added with the microfine portland cement. So, in the near future, if the coal fired fly-ash is able to be used as grouting material in Korea, the demand of fly-ash will increase rapidly.

  • PDF

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

Vegetation Structure and Soil Properties of Hemerocallis hongdoensis Population (홍도원추리(Hemerocallis hongdoensis Makino) 개체군의 식생구조와 토양특성)

  • Hwang, Yong;Kim, Mu-Yeol;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.868-875
    • /
    • 2012
  • This study was carried out to analyze the vegetation properties, soil characteristics and ordination of Hemerocallis hongdoensis population in South Korea. The Hemerocallis hongdoensis population was classified into Mallotus japonicus dominant population, Viburnum wrightii dominant population, Melampyrum setaceum dominant population. Hemerocallis hongdoensis were mainly distributed along the coast of south-western iland of the Korean penninsula and it's population was located at an elevation of 6m to 362m. In the study sites, soil organic matter, total nitrogen, exchangeable potassium, exchangeable calcium, exchangeable magnesium, cation exchange capacity and soil pH were 16.18~21.70%, 0.56~0.97%, 0.42~0.88mg/kg, $3.38{\sim}5.65cmol^+/kg$, $1.12{\sim}2.38cmol^+/kg$, $25.93{\sim}41.45cmol^+/kg$, and 4.45~4.86 respectively. Mallotus japonicus dominant population was found in the steep sloped area that has high percentage of cation exchange capacity and total nitrogen than other populations. Viburnum wrightii dominant population was found gentle sloped area that has low percentage of cation exchange capacity and total nitrogen. Melampyrum setaceum dominant population was found in the medium sloped area that has medium percentage of cation exchange capacity and total nitrogen. Current status of Hemerocallis hongdoensis habitats is very vulnerable with local development constantly threatening the species' survival. Thus, concrete conservation plans to protect natural habitats should be set up as soon as possible.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

A Study on Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate (폐목재의 활용을 위한 기술동향 분석 및 경량잔골재로서의 활용방안에 관한 연구)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.84-90
    • /
    • 2012
  • Patents in Korea, Japan and the U.S. were searched at the Korea Intellectual Property Rights Information Service (KIPRIS) of Korea Institute of Patent Information using related keywords in order to analyze the trend of patents on the usage of waste wood. Materials on a total of 77 patents in Korea, 317 patents in Japan, and 316 patents in the U.S. that had been registered as patents as of Dec. 31, 2011 were collected. Among the collected materials, the patents rejected, expired, annulled, withdrawn and waived as well as those which had little relationship with waste wood were excluded and the 71 patents in Korea, 227 patents in Japan and 216 patents in the U.S. were finally selected for analysis. In addition, the properties of the mortar which used waste wood as an alternative for a part of the fine aggregate were tested as a basic study for the usage of waste wood as a lightweight aggregate for concrete. For the test, the waste wood of the pine tree was crushed, sifted through No. 8(2.4 mm) sieve, and then dried for 24 hours at $100{\pm}5^{\circ}C$. As it is known that some kinds of tree prevent the hardening of cement when the wood is mixed with cement, the crushed waste wood in this study was dipped in the water of $20^{\circ}C$, $50^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$ and then dried up before testing the properties of the mortar to examine the effect of the preliminary treatment of crushed waste wood.

  • PDF

Deterioration Diagnosis and Conservation Treatment of the Three-storied Stone Pagoda in the Cheongryongsa Temple, Anseong, Korea (안성 청룡사삼층석탑의 풍화훼손도 진단과 보존처리)

  • Lee, Sun-Myung;Lee, Myeong-Seong;Jo, Young-Hoon;Lee, Chan-Hee;Jeon, Seong-Won;Kim, Ju-Ok;Kim, Sun-Duk
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.661-673
    • /
    • 2007
  • Rock materials of the three-storied stone pagoda in the Cheongryongsa temple in Korea are mainly composed of gneissose two-mica granite and fine-grained granite. This stone pagoda shows structural instability due to cracks and breaking-out of the stones. The surface properties of the stone is highly degraded by various inorganic pollutants and epilithic biospecies. Therefore, this study carried out comprehensive deterioration diagnosis by non-destructive methods, and some conservation treatments base on the diagnosis were carried out to reduce weathering progress. As the treatments, the biospecies and lichen that covering on the stone surfaces were removed by dry and wet cleaning, and degraded concrete applied to the pagoda for restoration in the past was removed and repaired with epoxy resin. Oxidized iron plates inserted between the rock properties were also substituted titanium stainless steels. After all processes are completed, we sprayed consolidant on the rock surface. Finally, the ground of the stone pagoda was rearranged using small rock aggregates, and the fence was established for control of artificial deterioration by visitors and environmental maintenance.

Evaluation of the Properties of an Environment-Friendly De-icing Agent Based on Industrial By-Products (산업부산물을 활용한 친환경제설제의 특성평가)

  • Heo, Hyung-Seok;Lee, Byung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.132-139
    • /
    • 2017
  • A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride($CaCl_2$) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Changes in Quality Properties of Cherry Tomatoes, Cucumbers and Zuchinis Stored in the Ear-Infrared Radiated Chamber Equipped with Autoclaved tight Weight Concrete (원적외선 방사체인 경량기포콘크리트 시설내에 저장한 방울토마토, 오이 및 호박의 품질특성 변화)

  • 정준호;조성환
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.441-446
    • /
    • 2003
  • Cherry tomatoes, cucumbers and zuchinis stored in the far-infrared radiated chamber at 5$^{\circ}C$ or 10$^{\circ}C$ under 90% of relative humidity had been maintained in the fresh state for longer times than the control stored only in the cold chamber. Vegetables stored in the far-infrared radiated chamber showed lower values in weight loss rate, microbial colony count and decay ratio and higher ascorbic acid content than the control stored cold in the cold room through the storage period. We confirmed that vegetables stored in the far-infrared radiated chamber under low temperature and high humidity showed least changes in quality properties through the storage period and the far-infrared radiated facilities could be a good storage system.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF