• Title/Summary/Keyword: Concrete properties

Search Result 5,725, Processing Time 0.031 seconds

An Experimental Study on Water-Purification Properties in Cement Bricks Using Effective Micro-Organisms and Zeolite (유용 미생물과 제올라이트를 이용한 시멘트 벽돌의 수질 정화 특성에 관한 실험적 연구)

  • Kim, Wha-Jung;Choi, Kil-Jun;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2011
  • The purpose of this study is to use organisms or micro-organism functions for eco-friendly water-purification of cement bricks, utilizing bioremediation. Many researches have been performed in the past to improve water quality by using effective micro-organisms in construction materials. In order to purify water using micro-organisms, this research used soybean paste bacteria, an effective micro-organism that was identified through 16S rDNA sequence analysis performed in Daegu S. Environment Protection Institute in addition to Natto bacteria that was studied in the previous research. With these effective micro-organisms with water-purification ability, this study examined their water-purification possibility on cement bricks. This study used Zeolite to immobilize micro-organisms to bricks, and confirmed that the micro-organisms were attached on Zeolite from SEM analysis. The experimental results showed that specific micro-organisms can be used to effectively remove contamination an used to develop eco-friendly construction materials. The study on micro-organisms for material purification shows great promises as a future research topic.

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Examination of the Characteristics of Mortar Mixed with Boron Compounds Presenting Various Levels of Alkalinity (다양한 알칼리도를 가진 붕소화합물이 혼입된 모르타르의 특성 검토)

  • Lee, Binna;Lee, Jong-Suk;Min, Jiyoung;Lee, Jang Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • This study examines the characteristics of mortar mixed with various boron compounds. The adapted boron compounds, classified into acid, slightly alkaline and strongly alkaline with respect to the value of the pH are acid-based boron (AA), low-alkaline-based boron (AB), and high-alkaline-based boron (HB). The pH test, setting test and compressive strength test are performed to evaluate the physical and chemical properties of mortar, and SEM imaging is conducted to analyze the microstructure of mortar. The measured pH shows that the specimens mixed with boron compounds have lower pH than the basic mortar without boron and that loss of pH occurs according to time. The setting test reveals that the initial and final setting times of the specimens mixed with boron compounds occur later than the basic mortar, which disagrees slightly with the previous literature stating that the setting time can be shortened according to the alkalinity. From the compressive strength test and SEM imaging results, it is recommended to determine the optimal content of boron considering type and composition of the boron compounds.

An Experimental Study on Hydration and Strength Development of High Blain Cement at Low Temperature (저온환경에서 고분말도 시멘트의 수화반응 및 강도발현 특성에 관한 실험적 연구)

  • Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung;Kim, Mok-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • In this study, fundamental properties of cement were reviewed to apply high fineness cement at low temperature environment. The classified high fineness cement has large proportion of particles below $10{\mu}m$ which affects early hydration: an overall reaction of cement hydration faster. As a result of using high fineness cement, setting time of concrete was reduced and compressive strength was higher than OPC at all ages. Especially, compressive strength was more than double its value compared with OPC after three days curing in low temperature. Faster reaction and higher heat of hydration was verified by calorimetry early and maximum heat of hydration was analyzed by adiabatic temperature raising test. The analysis of this study confirmed that high fineness cement can be suitable to be used in low temperature environment.

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Study on the Effect of Fineness and Substitution Rate of Natural Zeolites on Chemical Reaction and Physical Properties of Cement Mortar (천연 제올라이트의 분말도와 치환율이 시멘트모르타르의 화학반응 및 물리적 특성에 미치는 영향에 관한 연구)

  • Yoon, Chang-Bok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.96-103
    • /
    • 2020
  • As a basic study for the application of natural zeolite as a concrete admixture, the compressive strength, activity factor, Ca(OH)2 quantitative analysis and XRD experiments were investigated. It is thought that SiO2, which is abundant in natural zeolite, affects the strength development by reacting with the hydration product of cement in all specimens in which natural zeolite was added according to powder level and substitution rate. As the substitution rate increases, the compressive strength decreases, which is considered to be due to the decrease in the amount of C3S and C2S minerals in the clinker, which affects the strength expression compared to the cement content of the reference mortar. The XRD crystal structure did not show a significant difference from the reference mortar, and it was confirmed that the Z2-10 (Blaine: 15,600㎠ / g) specimen with 10% substitution of natural zeolite was the best among the experimental levels. Substitution amount for use as concrete admixture is 10% substitution is most ideally seen.

An Experimental Study on the Heat Storage Properties of Phase Change Material Using Paraffin Sheets in Building (파라핀을 이용한 건축용 시트형 잠열축열재의 축열특성에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.435-441
    • /
    • 2011
  • The life cycle assessment on greenhouse gas emission of reinforced concrete buildings shows that more than 70 percent of greenhouse gas that is discharged by a building is discharged in the building maintenance stage, including cooling and heating. To reduce the greenhouse gas emission, maintenance planning to minimize the energy consumption is necessary in the design stage. In this paper, two heat storage rooms are tested to save the air cooling energy of the buildings. The specimens are essentially identical, except that chamber A contained paraffin sheets as the finishing material, while the other, chamber B, served as a control. The test results show that chamber A with the paraffin sheets exhibited less temperature change than chamber B without the sheets when temperature was increased outside of the specimens. The heating energy was probably consumed in the phase change of the paraffin sheets, which can be useful for reducing energy consumption related to air cooling during the summer.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF