• Title/Summary/Keyword: Concrete panel

Search Result 547, Processing Time 0.027 seconds

The Structural Analysis of Corrugated Polyethylene-Plastic Form Panel and Concrete of Composite System (요철형 PE-PANEL과 콘크리트 합성구조물의 구조해석)

  • 김두환;박태인;박우영;한석규
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2001
  • Theoretical definitions of mixed behavior of PE panel and connote should have preceded to cause a mixed behavior of connote and polyethylene which have different elastic module, one-line expansion coefficients, poison ratios, compressive strengths and tensile strengths. Consequently, changes are analyzed through experiment process to identify the effects on interpretation of mixed behavior on the basis of temperature change of structures, temperature rise of concrete other than PE panel due to hydration heat temperature rise of concrete other than PE panel due to drying and contraction, working of hydrostatic pressure by storage and temperature gradient From the results of interpretation of the analysis, it is concluded that PE panel have slight influences on the change of guess of structures and maintains structural stability compared with concrete structures without PE panel.

  • PDF

Microstructure Properties of Cement Extruding Solid using Waste Concrete Powder (폐콘크리트 미분말을 사용한 압출경화체의 미시구조 특성)

  • Yu, Jae-Seong;Kim, Jin-Man;Sun, Jeong-Soo;Choi, Hong-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.55-56
    • /
    • 2016
  • In the recent concrete industry, when producing recycled aggregates, waste concrete powder is by-produced in large quantities; however, since it is not used properly but buried or discarded. This study is to apply the waste concrete powder to a cement extruding panel as filler. Flexural strength and microstructure characteristics of panel is tested in order to improve the economics of the extruding panel. As a results of this study, it was found that extruding panel replacing silica(No.8) as the waste concrete powder totally showed little difference in the strength and satisfied the target flexural strength of 14MPa, comparing with controlled panel. In addition, we can understand that rich Portlandite and Calcite contributed to develop the strength in all curing conditions from XRD pattern.

  • PDF

Strength of Vertical Joints in Large Concrete Panel Structures (대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰)

  • 이용재;서수연;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

The Advanced Composite Sandwich Panels for Light Weight of Road Structures (도로구조물 경량화를 위한 복합재료 샌드위치 패널에 관한 연구)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS : For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS : All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS : Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

The Properties of Flexural Strength and Density of Extrusion Molding Concrete Panel Using Sepiolite (세피올라이트를 이용한 압출성형 콘크리트 패널의 휨강도 및 밀도 특성)

  • Jung, Eun-Hye;Kang, Cheol;Kim, Jae-Won;Lee, Jung-Koo;Choi, Hun-Gug;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.49-52
    • /
    • 2006
  • Extrusion concrete panel is made by extrusion of high viscosity paste. The high viscosity paste is made by mix of cement, silica, reinforced fiber and thickening agent in the dry mixer and wet mixer subsequently, extrusion in the extruder, and curing in the normal steam curer and high pressure steam curer subsequently. To increase a flexural strength of the panel, it is used inorganic fiber as like asbestos. But it was known that the asbestos was harmful to human being lately, in the domestic area it is restricted usage in the construction materials. So, it is demanded the alternative material for asbestos in the extrusion concrete panel. This study is to investigate that the sepiolite is possible to be the alternative of asbestos. The 3 types of sepiolite is applied to the extrusion concrete panel. To investigate the properties of the panel with sepiolite, it is compared the control with asbestos in the flexural strength, the specific density and the spot compressive strength. From the test results, it was found that the panel with sepiolite B is higher than the control with asbestos in the flexural strength and in the density.

  • PDF

Evaluation of Flexural Behavior of Lightweight Precast Panel with Ultra High Performance Concrete (초고성능 콘크리트를 적용한 경량 프리캐스트 패널의 휨 거동 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;An, Gi-Hong;Son, Min-Su;Kim, Byung-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, flexural tests of precast concrete panels according to the thickness of cross-sectional and the with or not of reinforcement were carried out in order to develop and assess of a lightweight precast concrete panel using ultra high performance concrete. For the test, four panels were fabricated, and consisted of one normal concrete panel and three ultra high performance concrete panels. As a test result, it was found that the plain precast panel using ultra high performance concrete had a lower flexural performance than the reinforced normal concrete panel, regardless of the cross-sectional size. The flexural performance of the hollow-sectional precast panel applying ultra high performance concrete, is improved by 150% compared to that of the reinforced normal concrete panel. That is, through additional performance verification and optimization of the cross-sectional design of the panel, the ultra high performance concrete precast panel can be made lighter. Also, the practical use of lightweight precast panels with ultra high performance concrete can be available through evaluation on shear, joint connection and anchoring, etc.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.