• Title/Summary/Keyword: Concrete mat

Search Result 98, Processing Time 0.024 seconds

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

Curing Method Designation System in Mat Foundation Construction (매트기초 건설을 위한 양생방법 선정시스템)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.366-372
    • /
    • 2012
  • In most of construction work, especially mat foundation construction, it is very important that accidents be prevented at early aged construction stage. To reduce the risk of accidents, it is necessary to choose the curing method to provide instructions for safety forming work by proper curing of concrete after placing. Therefore, this paper has proposed a designation algorithm of curing method for representing curing type and period by analyzing the transient hydration heat solution, focusing on mat foundation construction. This has been implemented, moreover, using an object oriented programming language to develop structural analysis system taking account crack index. In addition, we present in this paper a safety curing management system developed to assess risk during forming work.

A Study on the Selection Method of Foundation Type in the Underground Parking Lot of Apartments (공동주택 지하 주차장 기초형식 선정방법에 관한 연구)

  • Im, Nam-Gi;Lee, Yeong-Do;Bae, Yong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • Normally easy task of plat in urban architecture is that using underground full of activities for increase building site efficiency. Especially for using underground space for the parking lot. Also utilize underground is more increase for fulfill requirement in modern society considered with environmental friendly architecture. The primary objective of this study is to apply analyzed formal foundation type for selecting the optimum type of parking lots considered with structural stability, economical efficiency, construction efficiency, construction duration. This study aim to on criteria decided through the questionaries for the selection considered with in the scale of second stories parking lots underground, parking volume is 80 and reinforced concrete structure. The bearing capacity is 6~8m and downward from surface, healthy ground bearing capacity is 40 t/m2. This study comparative analysis and discuss economical efficiency, construction efficiency, construction duration based constructivist stability which applied Single foundation, Mat foundation, Drop Mat foundation. The result of this study is as follows: First, the result of economical efficiency is that on the basis of single foundation, Drop Mat foundation is 1.88, Mat foundation 2.04 as a comparative analysis on the basis of total construction cost included material cost, labor coast and machinery cost. Second, the result of construction efficiency order is single foundation, Drop Mat foundation, Mat foundation as a comparative analysis on the based connected characteristics. Third, the result of construction duration is that on the basis of Mat Foundation, Drop Mat foundation is 1.33, single foundation is 1.87 as a comparative analysis Critical Path. Forth, Each foundational type characteristics order through the matrix method is that overall each formal type of foundation contraries at economical efficiency and construction efficiency, construction duration. Also expect contradiction between engineers and owners due to engineer pursuit construction duration and ewer to begin with economical efficiency. Fifth, The selection of suitable foundation formal type needs that based consider project characteristic and field condition as according to above result of a comparative analysis. As a result, a comparative analysis economical efficiency, construction efficiency, construction duration of Mat foundation, Drop Mat foundation, single foundation with 3Bay reinforced structure underground parking lots on the healthy ground.

Numerical Analysis of Temperature and Stress Distribution in Mass Concrete Structure with External Restriction (외부구속을 받는 매스콘크리트 구조물의 수화열 해석)

  • 김은겸;조선규;신치범;박영진;서동기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.345-348
    • /
    • 1999
  • Since the cement-water reaction is exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volumn change associated with the increase and decrease of the temperature with the mass concrete. These thermal stresses will cause temperature-related cracking in mass concrete structures. These typical type of mass concrete include mat foundation, bridge piers, thich walls, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. In this paper, the effect of placing of crack control joint or construction joint was analysed by a three dimensional finite element method. As a result, using this method, crack control can be easily performed for structures such as wall-type structures.

  • PDF

A Method on the Control of Hydration Heat of Mass Concrete Considering the Difference of Setting Time (응결시간차를 활용한 매스콘크리트의 수화열 조정공법)

  • 심보길;윤치환;한민철;김기철;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.379-384
    • /
    • 2001
  • This Paper Presents field application test results of mass concrete using super retarding agent. The field test was carried out at mat foundation(thickness 1m) of newly constructed information center of Chongju university. Placing lift composed of 2 layers, and each layer is 50cm. Fly ash and flowing method is also applied. Difference of setting time of concrete between with super retarding agent and without super retarding agent is considered. Concrete without super retarding agent is placed at upper layer and with super retarding agent at lower layer According to test results, the reducing method of hydration heat considering difference of setting time with super retarding agent can reduce the highest temperature about 3~4$^{\circ}C$, and delay the peak time about 3~4days. Compressive strength using super retarding agent is somewhat higher than that of normal concrete. Accordingly, super retarding agent does not affect the strength development.

  • PDF

A Study on the Effect of Pipe Cooling in Mass-Concrete (매스콘크리트의 파이프 쿨링 효과)

  • 윤승권;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.329-333
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, or pipe-cooling. In order to control the heat of hydration of mass-concrete structures such as massive pier or anchor block, and mat foundation, the pipe cooling method is widely acceptable for pratical use. In this paper, method of analysis using the Finite Element Method was applied to analyze the heat exchange on the field of three dimensional thermal conduction. The result of analysis Well agreed with experimentally measurement data by "KUMATANI". The method of this analysis will be used widely to control the heat of hydration by the pipe cooling in mass-concrete.-concrete.

  • PDF

Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete (크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석)

  • 김진근;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

Thermal Crack Control about of LNG in Inchon (인천 LNG 지하탱크 Bottom 의 온도균열제어)

  • Koo, Bon-Chang;Ha, Sang-Wook;Kim, Dong-Seuk;Ha, Jae-Dam;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.291-296
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is s serious problem, particularly in concrete structures such as bridge piers. thick walls, box type walls, mat-slab of nuclear reactor building, dams of foundations of high rise buildings, etc. As a result of the temperature rise and restriction condition of foundation, the thermal stress which way induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which consider steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis, Secondly it shows the application of the cracks control technique like the bottom of No.15,16 Underground LNG Tank in Inchon.

  • PDF

Proposed Detailing of Reinforcement to Enhance the Structural Performance in Two-way Slab System (이방향 슬래브의 구조성능 향상을 위한 배근상세의 제안)

  • ;Denis Mitchell
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.379-384
    • /
    • 1998
  • To overcome the common deficiencies found in such two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic reinforcing steel distribution detailings. Concentration of the top mat of flexural reinforcement result in a higher punching shear resistance, higher post cracking stiffness, a more uniform distribution of strains in the top bars and smaller cracks at all levels of loading.

  • PDF

The Evaluation of Bed Protection as Placing Methods of Mortar (모르타르 타설 방법에 따른 하상보호공의 안정성 평가)

  • Kim, Jong-Tae;Kim, Chang-Sung;Kang, Joon-Gu;Yeo, Hong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1102-1108
    • /
    • 2014
  • This study was to compare the protection abilities of an SPF through ground or underwater casting. A mat of 1/10 scale was made and then mortar was placed on the ground and submerged conditions. A limit velocity of each mat was estimated with this experiment. As a result of the test, the mat failed because of the decrease of bearing power in the center of the waterway. On the one hand, the edge of the mat, where the velocity is slow, secures stability. The result of the limit velocity analysis suggests that a velocity of ground placement with 6.51m/s and underwater casting with 9.80m/s is the minimum to ensure stability. When SPF mat with a thickness of 0.50m is replaced with a concrete block, it is calculated to need a maximum thickness of 2.21m.