• Title/Summary/Keyword: Concrete liner

Search Result 53, Processing Time 0.027 seconds

A Study on Development of a Liner Manufactured by Mine Wastes and Polymer (광산폐기물과 폴리머를 이용한 Liner 개발에 관한 연구)

  • 진호일
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Development of an effective liner by utilization of the tailings frm the Imcheon mine and polymer has been tried. The tailings piled in the Imcheon mine, whose true specific gravity is about 2.86, are composed mainly of quartz, alkali-feldspar, muscovite and pyrite, and mostly (93.7% in volume) coarser than sand grain size (50${\mu}{\textrm}{m}$). Strength, leaching and permeability tests have been performed on the test specimens of polymer concrete manufactured with various mixing proportions of tailings, unsaturated polyester resins(UPR), calcium carbonates, stone powder sludges and granite soils. Polymer concrete specimens with stone powder sludges or granite soils as fillers and aggregates indicate 2.5 to 3 fold higher flexural and compressive strengths and lower permeabilities than those with calcium carbonates, which shows their usability as a waterproof liner. Also, the polymer concrete liner with stone powder sludge fillers is more advisable in aspects of utilization of waste sludges than that with other fillers.

  • PDF

Development of a Large 3D printer for Manufacturing Form-Liner and Protective Skin of Concrete Structures

  • Jang, Jungsik;Hong, Kee-Jeung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.74-86
    • /
    • 2020
  • This study discussesresearch and development of large-sized 3D printers that can be applied to construction and civil engineering for various designs of protective casing on foam liner for concrete exteriors. The consistent use of concrete represents the current surroundings. However, concrete exteriors in Korea have not considered the regional characteristics, but the concrete has been poured solely for economical aspects for the last decade or two. There are many cases of poor installation and not enough design development projects to correct it. This study was conducted to apply various patterns, regional characteristics, and 3D printing for protective casing design for foam liner to create various designs for the concrete walls. Therefore, we started researching on a large 3D printer, and designed and developed this system. Considering the chronological process, the properties of concrete structures were identified, the application of designs for concrete in Korea and abroad and the 3D printing materials for the protective casing were surveyed and analyzed, and a stereotype was produced in the first year to study designs for the beauty of concrete surfaces. In the second year, images of regional characteristics were gathered, design ideas for regional promotion were derived, virtual images were produced along with design modeling to simulate the appearances, and verify the effect of application and promotion. Finally, in the third year, the 3D printer for concrete foam liner was constantly improved to analyze the 3D printing program and the various library elements to complete an actual large-sized 3D printer.

Characteristics of Excess Water Dewatered Concrete Using Permeable Liner (투수시트를 적용하여 잉여수를 탈수한 콘크리트의 강도 특성)

  • Jeon, Kyu-Nam;An, Gi-Hong;Lee, Jong-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.675-682
    • /
    • 2013
  • In this study, to enhance the quality of concrete surface by removing the surplus water, permeable liner attached the euroform was applied for manufacturing concrete specimens. Various kinds of concrete mixtures with different water to binder ratios were applied and the strength properties of the hardened concrete surfaces were evaluated at different heights. Experimental results showed that the rebound values by schmidt hammer test and the compressive strengths on the surfaces of concrete specimens were increased as proportion to the amount of mixture water which is dependent on the water to binder ratio of each concrete mixture, and more enhancements were observed on the middle and lower specimen surfaces than the upper region. SEM analysis also showed that much denser hydrate structures were observed on the specimen surfaces by the application of the permeable liner while similar hydrate formations were occurred regardless of surface treatment conditions. From the MIP test results of the concrete surfaces, it was observed that, by the application of permeable liner, the pore volume below $0.01{\mu}m$ was decreased with a maximum of 50% resulting in the densification of pore structures.

Properties of Permeable Formwork using Permeable Liner (투수시트를 활용한 투수거푸집의 특성)

  • Lee, Jong Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.419-426
    • /
    • 2012
  • Fresh concrete has 10~20% extra water in it. As those water remain entrapped air in the concrete, life span of structures is reduced. For that reason, if extra water is eliminated, it will be useful to improve the durability of the structures. Though there were many reports about permeable formwork, the study on the properties of permeable liner itself has been insufficient. In addition, making holes on the form causes lowering of workability. Therefore, this study reviewed the properties of woven and non-woven permeable liner and formwork which has no holes on the form. For the woven and non-woven permeable liner, they showed great application with W/C decrease, lowering roughness, increased compressive strength of surface area and slight loss of cement paste, when the were applied to concrete. In addition, they showed different performance according to the density of woven liner or thickness of non-woven liner. Furthermore, when using the draining non-woven permeable liner which has drainage path inside, concrete surface showed required performance with high workability, without drilling the holes on the form.

Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant (원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발)

  • Lee, Jeong Seok;Kim, Wang Bae;Kwak, Dong Ryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

An Estimation of the Long-Term Properties of Epoxy Used for Reinforcing Surface in Concrete (콘크리트 표면강화 에폭시의 장기특성 평가)

  • 김성욱;김도겸;이장화;김근경;김상조
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.183-186
    • /
    • 1999
  • Up to date, it is difficult to estimate the consistence of properties on the epoxy liner in service time because an estimation of the long term environment-deterioration with aging has not been processed. In the study, the estimation on epoxy liner is carried by the physical test 7 rounds. There are the elongation the and the crack bridging test in the part of physical tests. An elongation test is carried out with epoxy membrane and a crack bridging test is carried out with specimen painted epoxy on concrete. The subjects of test and estimation are a containment quality system and a fibre-glass reinforced system. The materials of these systems are a Robber added Epoxy, a Silica added Epoxy, and a Fiber reinforced Epoxy. Ensuring the test data, properties of epoxy liner was estimated and the change of properties was predicted on epoxy liners.

  • PDF

Stability Analysis of Concrete Liner installed in a Compressed Air Storage Tunnel (압축공기 저장용 터널에 설치된 콘크리트 라이닝의 안정성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.498-506
    • /
    • 2009
  • The stability assessment of a concrete liner of a compressed air storage tunnel should be performed by an approach which is different from that commonly used for the liners of road tunnels, since the liner is exposed to high air pressure. In this study, the stability analysis method for the liner of compressed air storage tunnel is proposed based on the elastic and elasto-plastic solutions of the thick-walled cylinder problem. In case of elastic analysis, the yield initiation condition at the inner boundary is considered as the failure condition of the liner, while the condition which results in the extension of yielding zone to a certain depth is taken as a failure indicator of the liner in the elasto-plastic analysis taking Mohr-Coulomb criterion. The application of the proposed method revealed that the influence of the relative magnitude of boundary loads on the stability of liner is considerable. In particular, noting that the estimation of the outer boundary load may be relatively difficult, it is thought that the precise prediction of outer boundary load is very important in the analysis. Accordingly, the emphasis is put on the selection of the liner installation time, which may govern the magnitude of outer boundary load.

MiSA (Method of Integrated Spectral Analysis) to Evaluate Structural Integrity of Tunnel Concrete Lining (터널 콘크리트 라이닝의 구조적 특성평가를 위한 탄성파 기법, MiSA의 개발)

  • 김기봉;추진호;조성호;조미라
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.49-56
    • /
    • 2001
  • The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.

  • PDF

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.