• Title/Summary/Keyword: Concrete grinding

Search Result 70, Processing Time 0.03 seconds

A Study for Roughness of Joungbu Expressway (중부고속도로 평탄성 특성에 관한 연구)

  • Kim, Sung-Ho;Suh, Young-Chan;Cho, Yoon-Ho;Park, Kyung-Boo
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.131-140
    • /
    • 2001
  • Concrete pavement of Jungbu Expressway composed of CRCP(Continuously Reinforced Concrete Pavement) and JCP(Jointed Concrete Pavement). The CRCP was firstly constructed and applied to new expressway in Korea. It is a good source of the study to analyze the performance of CRCP and JCP because it experiences same amount of traffic and environmental loading. Up to the present, condition survey has conducted several times during 13 years but roughness measurement has not been carefully conducted. Through comparisons among several types of pavement(CRCP, JCP, Asphalt) by roughness, CRCP is superior to JCP. In addition, connected sections in the highway such as bridges and tunnels that have higher IRI values, about 5mm/m, than normal sections should be considered appropriated maintenance such as diamond grinding. The relationship between IRI and distresses carried out by Korea Highway Cooperation in 1999 skewed that the number of crack is related to IRI value in JCP, while other distresses of JCP and CRCP are not shown clearly. The comparison study with IRI values between Jungbu Expressway and GPS-3(JCP) and GPS-5(CRCP) of LTPP data also showed that roughness of Jungbu Expressway is not inferior to that of the state. Some of section showed larger values of IRI are linked with under-9round structures for passages and drainages. The overall performance considering only roughness, the CRCP is also superior to JCP in sections with under-ground tunnels.

  • PDF

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

The Particle Size distribution of Cement Binder and Rheological Properties of Paste (시멘트 혼합재의 입도분포와 페이스트 유동특성)

  • Yoo, Dong-Woo;Choi, Hyun-Kook;Lee, Seung-Heun;Lee, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • This study examined rheological properties of blast furnace slag and ash paste that are widely used as cement concrete for mineral admixture in current. In that way rheological properties of the paste of mineral admixture only was examined. The result of this study were as follow: In order to analyze that the rheological properties of the mineral admixture only, fine particles were produced with grinding machine to 3 particle sizes. These powders in general from the result of comparison with and analysis of rheological properties and the coefficient n and De values. The result that ash powder was higher in plastic viscosity and yield stress than Slag powder, and with the same n value, ash powder showed higher plastic viscosity and yield stress than Slag powder. But Slag powder in particle size distribution showed a sensitive tendency on changing in rheological properties.

  • PDF

An Experimental Study on Heating Manufacture of Recycled Aggregate by Design of Experiment (실험계획법을 이용한 가열방식의 순환굵은골재 제조를 위한 실험적 연구)

  • Nam, Eun-Yong;Hwang, Sun-Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • The use of wasted concrete can settle the environmental pollution and shortage of natural aggregate. However, recycled aggregate includes substantial amount of cement paste, so that these aggregates are more porous, and less resistant to mechanical actions than natural aggregates. Recently, the new manufacturing processes of high quality recycled aggregates were suggested such as heating. In this paper, for the purpose of manufacture of high quality recycled aggregates, the heating processes was considered to the existing process of recycled aggregates. To find the optimum process, the experiment was performed through the statistical design of experiment. The heating temperatures of 4 levels (300, 450, 600 and $750^{\circ}C$) and heating duration time (5, 20, 40, 60minute) were main experimental variables. Through the test results, it was found that the optimum manufacturing condition of coarse recycled aggregate was evaluated to be $600^{\circ}C$ and 40minute.

  • PDF

Investigation for Utilization of Separator Bag Filter Cement (세퍼레이터 백필터 집진 미립자시멘트 (SBFC : Separator Bag Filter Cement)의 활용성 검토)

  • Kim, Kyoung-Min;Park, Sang-Joon;Yoo, Jea-Kang;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • This paper presents the feasibility of incorporating ultrafine particles collected in the separator bag filter (separator bag filter cement, SBFC) during the cement manufacturing process as an substitution material for cement. SBFC does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. Therefore, this research has examined the characteristics of SBFC and fresh properties and mechanical properties after making paste and mortar using SBFC in order to use SBFC as a material to gain early strength of concrete. For results, analyzing the chemical composition and physical properties of SBFC, its blaine value was $6,953cm^3/g$, about double than that of OPC, but its chemical composition showed no significant difference. According to the result of the paste and mortar examination, the paste and mortar mixed with SBFC showed a lower flowability, earlier setting time, and higher compressive strength than that with OPC. The result of microstructure analysis of paste, the paste mixed with SBFC indicated about 9% lower internal porosity at an early age than that of OPC. The compressive strength and flexural strength of mortar were higher in the order of SBFC ratio of 100, 50 and 0% SBFC.

  • PDF

New Practical and Eco-friendly Recycling method of FRP Boats (FRP선박의 재처리시스템과 활용성 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP in a new product. is one of the simpler and more technically proven methods than incineration or reclamation ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also occurs secondary problem such as air pollution and unacceptable shredding noise level. The another urgent problem which is a serious barrier to FRP recycling is very limited reusable applications. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating system. And it also have shown the polymer cement and fiber-reinforced concrete applications with the waste FRP.

  • PDF

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

Developing An Extracting Method of Laminated Glass-Fiber for Waste FRP Boats Regenerating (폐FRP 선박의 재자원화를 위한 유리면포 추출장치 개발)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • There are several basic classes of recycling methods for FRP boats. The main one is 'Mechanical recycling' which involves shredding and grinding of the scrap FRP in a new product. That is one of the simpler and more technically proven methods. It recently has been reported that FRP can be recycled by separating into layers instead of crushing into powder. Many researchers should be more interested in these mechanical recycling for the eligibility. Nevertheless, because resins is very useful renewable energy, most of waste FRP regenerating methods depend on incineration (reclamation) or thermal recycling (pyrolysis). FRP is made up of laminated glass- fiber (roving cloth layer) which is also very unlikely to break into each layer. If there is an extracting method which is efficient and environment friendly removing glass fiber from waste FRP, it should also solve the another urgent problem. Laminated glass-fiber which is very limited renewable, is a serious barrier to wast FRP boat regenerating. This study is to propose a new extracting method which is efficient and environment friendly waste FRP regenerating system. And it should be applied to renewable energy applications with the waste resins of FRP. Also recycling glass fiber obtained by the separation of the roving layer from waste FRP will be consider to be useful for concrete products or structures.

  • PDF