• 제목/요약/키워드: Concrete flange

검색결과 229건 처리시간 0.02초

용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조특성 (Structural Characteristics of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm)

  • 이성희;정헌모;김대중;김진호;최성모
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.711-722
    • /
    • 2008
  • 기존 콘크리트충전 각형강관(CFT) 구조에 사용하는 각형강관은 4개의 판을 용접하여 제작하는 박스칼럼이 일반적이다. 그러나 이러한 강관은 제작효율이 저하되며, 또한 기둥-보 접합부에는 내측 다이아프램과 관통 다이아프램을 용접하는데 특수한 용접기술이 필요하다. 따라서, 얇은 강판을 절곡하는 방식으로 응력집중 위치의 용접을 피하고, 단면효율이 극대화된 내부앵커 돌출형의 각형강관을 개발하게 되었다. 본 연구에서는 이 개발된 강관의 기둥-보 접합부로 외다이아프램형식을 채택하고. 보 플랜지의 응력 전달을 명확히 하기 위한 기둥-보 접합부 상세를 확 정하고자 이 접합부에 대한 단순인장 실험체를 제작하여 성능평가 실험을 수행하였다. 이 실험을 통해 콘크리트충전 기둥-보 접합부의 기둥-보 플랜지 용접 유무, 기둥-다이아프램 용접량, 콘크리트 충전유무, 다이아프램 설치 기둥과 일반기둥의 비교 등에 따른 인장영역 응력분포 및 내력평가를 진행하고 내부 앵커와 콘크리트 사이의 합성효과를 파악하였다.

강판 콘크리트 구조 접합부의 설계방식에 따른 검증실험 연구 (A Study on Verification Tests according to Connection Design Methods of Steel Plate Concrete Structures)

  • 황경민;이경진;양현정;김원기
    • 한국강구조학회 논문집
    • /
    • 제26권1호
    • /
    • pp.1-10
    • /
    • 2014
  • 본 연구에서는 원전 구조물 내 철근 콘크리트 구조와 강판 콘크리트 구조가 이질접합된 경우를 모사하기 위하여, 상하부 표면강판 간에 타이바를, 상하부 리브재 간에 타이형강을 구성한 보형 실험체를 제작하여 실험체의 면외 휨 거동특성을 확인하고자 하였다. 실험결과, 실험체의 연성거동을 검증하였으며, 타이바와 타이형강이 콘크리트 및 강판의 분리를 방지함으로써 접합부의 취성파괴를 막아주고 있음을 확인하였다. 또한, #14 주철근으로 구성한 강판 콘크리트 구조 접합부에 대하여 두 가지 형태의 기계적 정착이음 방식에 따른 인장실험을 수행함으로써 본 방식의 설계 적정성을 평가하였다. 실험결과, 두 실험체 모두 주철근이 항복에 도달할 때까지 철근의 정착 및 연결 기능을 탄성한도 내에서 건전히 수행하고 있음을 확인하였다.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

Strengthened and flexible pile-to-pilecap connections for integral abutment bridges

  • Lee, Jaeha;Kim, WooSeok;Kim, Kyeongjin;Park, Soobong;Jeong, Yoseok
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.731-748
    • /
    • 2016
  • Pile-to-pilecap connection performance is important as Integral abutment bridges (IABs) have no expansion joints and their flexible weak-axis oriented supporting piles take the role of the expansion joint. This connection may govern the bridge strength and the performance against various lateral loads. The intention of this study is to identify crack propagation patterns when the pile-to-pilecap connection is subjected to lateral loadings and to propose novel connections for improved performance under lateral loadings. In this study, eight different types of connections were developed and modeled, using Abaqus 6.12 to evaluate performances. Three types were developed by strengthening the connections using rebar or steel tube: (i) PennDOT specification; (ii) Spiral rebar; and (iii) HSS tube. Other types were developed by softening the connections using shape modifications: (i) cylindrical hole; (ii) reduced flange; (iii) removed flange; (iv) extended hole; and (v) slot hole connection types. The connections using the PennDOT specification, HSS tube, and cylindrical hole were shown to be ineffective in the prevention of cracks, resulting in lower structural capacities under the lateral load compared to other types. The other developed connections successfully delayed or arrested the concrete crack initiations and propagations. Among the successful connection types, the spiral rebar connection allowed a relatively larger reaction force, which can damage the superstructure of the IABs. Other softened connections performed better in terms of minimized reaction forces and crack prevention.

철근콘크리트 속빈 단면 보의 곡률연성지수 특성 (The Characteristics of Curvature Ductility Factor of Reinforced Concrete Hollow Section Beams)

  • 이형준
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6542-6549
    • /
    • 2013
  • 콘크리트 구조물이 대형화됨에 따라 고교각, 장지간의 보 등 부재가 장대화되고 있으며, 장지간의 철근콘크리트 부재에서는 자중을 줄이고 강성을 증가시키기 위해 속빈 단면을 사용하는 것이 증가하는 추세이다. 본 연구에서는 철근콘크리트 속빈 단면 보의 모멘트-곡률 관계를 해석적 방법으로 구하여 속빈 부분의 크기, 상부플랜지와 복부의 철근 배치조건이 부재의 휨거동 및 곡률연성지수에 미치는 영향을 분석하였다. 속빈 부분의 크기($b_i/b_o$ 또는 $h_i/h_o$)가 0.5이하일 때에는 곡률연성지수가 일정하게 유지되며, 0.7이상이 되면 곡률연성지수가 급격히 감소하였다. 또한, 복부에 철근을 배치하면 곡률연성지수가 감소하며 단철근 보에서와 같은 수준의 연성지수를 얻기 위해서는 복부에 배치한 철근과 같은 양을 상부플랜지에 배치해야 하는 것으로 나타났다.

철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구 (Seismic Behavior of Steel Moment Connections with Different Structural Characteristics)

  • 조창빈
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • 제5권4호
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Magnetic Interference on the Infrastructure for a Super-speed Tube Train

  • Lee, Hyung-Woo;Jang, Seung-Yup;Kang, Bu-Byoung;Cho, Su-Yeon;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.364-368
    • /
    • 2011
  • The super-speed tube train was introduced to increase the speed of ground transportation. It levitates magnetically and runs in a partial vacuum tube, which significantly reduces air resistance. However, strong magnetic force sufficient to propel the massive train can affect the infrastructure. The induced eddy current produces joule heat, and raises the inside temperature of the girder, which might lead to electrochemical corrosion on the girder, thereby weakening its durability. In this paper, the authors analyzed the magnetic flux and induced eddy current in the reinforced concrete girder by using three-dimensional FEM, particularly by varying the number of reinforcing steels of the upper flange of the girder to the condition of almost the same flexural strength and reinforcing steel amount.

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • 제2권6호
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.