• Title/Summary/Keyword: Concrete filled steel tube column

Search Result 279, Processing Time 0.019 seconds

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

An Experimental Study on Distribution of Ultimate Strength of Concrete-Filled Steel Tube Columns according to Concrete Strength and Section Properties Ratio (콘크리트강도 및 단면특성에 따른 콘크리트 충전강관(CFT) 기둥의 극한강도 분포에 관한 실험적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • Recently, to improve the load carrying capacity of column structures such as bridge piers, application to concrete-filled steel tube(CFT) type columns are increased more and more. To design the concrete-filled steel tube(CFT) columns in accuracy, influence of material and geometry properties and aspect ratio on ultimate strength of the concrete-filled steel tube column is investigated by experimental researches. In this investigation, the ultimate strength distribution of the concrete-filled steel tube column in accordance with diameter-thickness ratio(D/t) and steel-concrete area ratio(As/Ac) are clarified by the compressive tests. Futhermore, parametric experimental investigation on concrete target strength is performed. It was known from experimental observation that ultimate strength of concrete-filled steel tube column under axial compressive loading more depends on section properties of steel tube rather than concrete strength.

  • PDF

An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener (스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Sung-Su;Kim, Won-Ho;Lee, Hyung-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Experimental research on load-bearing capacity of cast steel joints for beam-to-column

  • Han, Qinghua;Liu, Mingjie;Lu, Yan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • The load transfer mechanism and load-bearing capacity of cast steel joints for H-shaped beam to square tube column connection are studied based on the deformation compatibility theory. Then the monotonic tensile experiments are conducted for 12 specimens about the cast steel joints for H-shaped beam to square tube column connection. The findings are that the tensile bearing capacity of the cast steel joints for beam-column connection depends on the ring of cast steel stiffener. The tensile fracture happens at the ring of the cast steel stiffener when the joint fails. The thickness of square tube column has little influence on the bearing capacity of the joint. The square tube column buckles while the joint without concrete filled, but the strength failure happens for the joint with concrete filled column. And the length of welding connection between square tube column and cast steel stiffener has little influence on the load-bearing capacity of the cast steel joint. Finally it is shown that the load-bearing capacity of the joints for H-shaped beam to concrete filled square tube column connection is larger than that of the joints for H-shaped beam to square tube column connection by 10% to 15%.

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

An Analytical Investigation on the Ultimate Strength of Concrete-Filled Steel Tube Columns using Elasto-Plastic Large Deformation Analysis (탄소성 대변형 해석을 이용한 콘크리트 충전강관(CFT) 기둥의 극한강도에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.69-74
    • /
    • 2007
  • Recently, to improve performance and strength of circular steel columns, application of concrete-filled steel tube(CFT) type are gradually increased. To accurately predict the plastic design of concrete-filled steel tube columns, a plasticity model is required which can be describe large deformation behavior of concretes and steels. In this study, elastic-plastic large deformation analysis is developed by using the plasticity model of structural steels, and accurate and validity of the developed program is verified by comparing between the experiment and the analysis for concrete-filled steel tube column. In concrete-filled steel tube columns, influence of initial deflection on ultimate strength behavior is investigated by using developed program.

  • PDF

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

An approach for partial strengthening of circular RC columns using outer steel tube

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.739-749
    • /
    • 2021
  • This paper introduces an improved design equation to evaluate the resisting capacity of circular reinforced concrete (RC) columns partially strengthened with outer steel tube. When RC column members are required to be strengthened according to the change in the loadings considered and/or the deterioration progress in columns, wrapping up RC column with steel circular tube, which takes the form of concrete filled steel tube (CFST), has been popularly considered because of its structural advantage induced from the confinement effect. However, the relatively high construction cost of steel tube is restricting its use to the required region, while deriving the shape of a partial CFST column. To evaluate the resisting capacity of a partial CFST column, numerical analyses need to be performed, and a numerical model proposed in the previous study for the numerical analysis of full CFST columns is used to conduct parametric studies for the introduction of a design equation. The bond-slip effect developed along the interface between the in-filled concrete and the exterior steel tube is taken into consideration and the validity of the numerical model has been established through correlation studies between experimental data and numerical results for partial CFST circular columns. Moreover, parametric studies make it possible to introduce a design equation for determining the optimum length of outer steel tube which produces partial CFST circular columns.