• 제목/요약/키워드: Concrete filled steel tube

검색결과 445건 처리시간 0.026초

콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구 (A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns)

  • 정경수;최성모;김동규
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.649-658
    • /
    • 1997
  • 강관에 콘크리트를 충전하는 경우, 콘크리트 충전강관 기둥은 뛰어난 내력과 변형성능을 발휘한다. 그리고 콘크리트의 축열효과에 의해서 일정시간은 내화피복 없이도 내력을 유지할 수 있다. 화재발생동안 콘크리트 충전강관 기둥의 거동을 알아보고자 강관과 콘크리트의 온도에 따른 특성치 변화를 가정하고 온도 해석 및 축력-모멘트관계에 대한 수치해석을 수행하여 시간변화에 따른 변수별로 비교평가하였다. 온도에 따른 특성치는 기존문헌의 데이터를 이용하였으며 온도해석은 범용 해석프로그램인 ANSYS로 유한요소해석을 하였고 이를 바탕으로 내력에 대한 수치해석을 수행하였다.

  • PDF

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Experimental research on load-bearing capacity of cast steel joints for beam-to-column

  • Han, Qinghua;Liu, Mingjie;Lu, Yan
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.67-83
    • /
    • 2015
  • The load transfer mechanism and load-bearing capacity of cast steel joints for H-shaped beam to square tube column connection are studied based on the deformation compatibility theory. Then the monotonic tensile experiments are conducted for 12 specimens about the cast steel joints for H-shaped beam to square tube column connection. The findings are that the tensile bearing capacity of the cast steel joints for beam-column connection depends on the ring of cast steel stiffener. The tensile fracture happens at the ring of the cast steel stiffener when the joint fails. The thickness of square tube column has little influence on the bearing capacity of the joint. The square tube column buckles while the joint without concrete filled, but the strength failure happens for the joint with concrete filled column. And the length of welding connection between square tube column and cast steel stiffener has little influence on the load-bearing capacity of the cast steel joint. Finally it is shown that the load-bearing capacity of the joints for H-shaped beam to concrete filled square tube column connection is larger than that of the joints for H-shaped beam to square tube column connection by 10% to 15%.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

중심축력을 받는 콘크리트 충전강관 기둥의 역학적 거동 특성에 관한 연구 (A Study on the Mechanical Properties of Concrete Filled Steel Tube Column under Centric Axial Load)

  • 박정민;김화중
    • 콘크리트학회지
    • /
    • 제7권5호
    • /
    • pp.133-144
    • /
    • 1995
  • 본 연구는 콘크리트 충전강관을 고층 건물의 구조부재로 이용하기 위한 연구의 일환으로서 강관의 폭두께비, 세장비와 충전콘크리트의 강도를 주요 변수로 하여 강관이 콘크리트를 단순 구속하는 경우의 재하조건으로서 일련의 실험을 콘크리트 충전강관 기둥의 역학적인 거동 특성을 고찰하였다. 얻어진 결론을 요약하면 다음과 같다. (1)구속 콘크리트의 파괴양상은 단주의 경우 시험체 단부에서의 압괴에 의한 $45^{\circ}$정도의 사인장 파괴가 이루어졌으며 장주의 경우 횡방향 휨 파괴 양상을 나타내었다. (2)원형강관으로서 콘크리트를 구속함으로서 변형능력의 향상과 동시에 콘크리트의 연성 효과를 증대시킬 수 있었다. (3)강관의 세장비, 폭두께비, 콘크리트의 강도를 고려하여 콘크리트의 구속계수를 이용하여 강관에 의해 구속된 내부 콘크리트와 충전 강관 기둥의 최대내력 산정식을 제안하였다.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

Composite action in connection regions of concrete-filled steel tube columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.47-64
    • /
    • 2003
  • In a nonlinear finite element study on the mechanical behavior of simple beam connections to continuous concrete-filled steel tube columns, two principally different connection types were analyzed: one with plates attached to the outside of the tube wall, relying on shear transfer, and one with an extended plate inserted through the steel section to ensure bearing on the concrete core. The load was applied partly at the connection within the column length and partly at the top, representing the load from upper stories of a multistory building. The primary focus was on the increased demand for load transfer to ensure composite action when concrete with higher compressive strength is used. The results obtained from the analyses showed that the design bond strength derived from push tests is very conservative, mainly due to the high frictional shear resistance offered by pinching and contraction effects caused by connection rotation. However, with higher concrete strength the demand for load transfer increases, and is hard to fulfill for higher loads when connections are attached only to the steel section. Instead, the connection should penetrate into the concrete core to distribute load to the concrete by direct bearing.

강섬유 첨가량에 따른 콘크리트 충전강관용 고성능 콘크리트 특성에 관한 실험적 연구 (An Experimental Study on the Property of High Performance Concrete for Concrete Filled Tube with Addition Content of Steel Fiber)

  • 서일;홍석범;유조형;박희곤;김우재;이재삼
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.213-214
    • /
    • 2012
  • This paper presents basic study to develop high performance concrete for concrete filled tube with addition content of steel fiber. In this study, all mixtures was added to nylon fiber (1.5 kg/㎥) and steel fiber was mixed by 0, 20 and 40 kg/㎥ respectively. To evaluate the property of high performance concrete was used to various test methods which were slump flow, air content, U-box test, O-lot test and L-flow(to 300 mm, 500 mm). Also, compressive strength test was measured by ages.

  • PDF

Creep effects on dynamic behavior of concrete filled steel tube arch bridge

  • Ma, Y.S.;Wang, Y.F.;Mao, Z.K.
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.321-330
    • /
    • 2011
  • Long-term properties of concrete affect structures in many respects, not excepting dynamic behaviors. This paper investigates the influence of concrete creep on the dynamic behaviors of concrete filled steel tube (CFT) arch bridges, by means of combining the analytical method for the creep of axially compressed CFT members, which is based on Model B3 for concrete creep, with the finite element model of CFT arch bridges. By this approach, the changes of the stress and strain of each element in the bridge with time can be obtained and then transformed into damping and stiffness matrices in the dynamic equation involved in the finite element model at different times. A numerical example of a long-span half-through CFT arch bridge shows that creep influences the natural vibration characteristics and seismic responses of the bridge considerably, especially in the early age. In addition, parameter analysis demonstrates that concrete composition, compressive strength and steel ratio have an obvious effect on the seismic response of the CFT arch bridge.