• Title/Summary/Keyword: Concrete deterioration diagnosis

Search Result 32, Processing Time 0.026 seconds

Development of Deterioration Diagnosis System for the R/C Structures - Mainly on Cause of Deterioration - (철근콘크리트 구조물의 열화 진단시스템 개발 - 열화요인 진단을 중심으로 -)

  • 이장화;박홍석;유영찬;김도겸;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.243-248
    • /
    • 1994
  • The purpose of this study is to develop Deterioration Diagnosis System for the Reinforced Concrete Structure which can be used preliminary in determining the factors causing deterioration by simple inspection and mapping of the indicators of deterioration. Total 29 items compromising material, structural and constructional factors causing deterioration were considered in this system. Also the indicators of deterioration were subdivided into 54 items such as concrete crack pattern and steel corrosion etc. Each indicator of deterioration was quantatified by allocating and giving grade to each item which has extra weight according to its conscquence. Satisfactory results were obtatined by applying this Diagnosis system to the indicators of deterioration in ref. [3]. Further research was required on the indicators of deterioration in construction site to enhance the field applicability of this system.

  • PDF

An Experimental Study on the Engineering Properties of Deteriorated Concrete by Fire Damage According to Curing Conditions (화재피해를 입은 콘크리트의 폭력에 대한 양생조건의 영향성 검토에 관한 연구)

  • Na, Chul-Sung;Kim, Young-Sun;Kim, Jae-Hwan;Kwon, Yung-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.557-560
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, this study is willing to propose fundamental data for accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the curing conditions.

  • PDF

An Experimental Study on the Engineering Properties of Deteriorated Concrete by Fire Damage According to Design Compressive Strength (화재피해를 입은 콘크리트의 폭렬에 대한 설계기준강도의 영향성 검토에 관한 연구)

  • Na, Chul-Sung;Cho, Bong-Suk;Kim, Jae-Hwan;Kwon, Yung-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.465-468
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, this study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design compressive strength.

  • PDF

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

The Standardized Methods for Improvement of Maintenance Deterioration caused by Fire damage (국제 표준화를 위한 화재이후의 유지관리 시스템 개발)

  • Kwon, Young-Jin;Koo, In-Hyuk;Kim, Dong-Eun;Seo, Dong-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.230-231
    • /
    • 2013
  • A fire outbreak in a reinforcement concrete structure looses the organism by different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So, concrete reinforcement structure is damaged partial or whole structure system. Therefore accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, consider case of investigation methods and repair work in fire damaged structure concrete.

  • PDF

The Standardized Methods for Improvement of Maintenance and Performance Construction of Deterioration caused by Fire damage (화재피해 콘크리트의 유지관리 및 시공성능 향상을 위한 표준화방안)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kim, Bong-Chan;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.16-18
    • /
    • 2013
  • A fire outbreak in a reinforcement concrete structure looses the organism by different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So, concrete reinforcement structure is damaged partial or whole structure system. Therefore accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, consider case of investigation methods and repair work in fire damaged structure concrete.

  • PDF

An Experimental Study on the Engineering Properties of Deteriorated Concrete using Recycled Fine Aggregate by Fire Damage (재생잔골재를 활용한 화재피해를 입은 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.190-196
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the Properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, This study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with making variable concrete test specimen, exposing high temperature environment, observing the explosive spalling and examining engineering property.

A Study on the Improvement of Evaluation Method of Diagnosis-System for Exterior-Wall Deterioration by Infrared Thermography (적외선 탐사기를 이용한 외벽열화 진단시스템의 평가기법 향상에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin;Kang, Suk-Puo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • It is difficult to estimate for deterioration of exterior wall by infrared thermography, because of amount of infrared-ray radiation effected by environmental factors such as temperature properties of materials, the outside air and the amount of solar radiation. Therefore we measured the distribution of temperature by times in the same reinforced-concrete structure in order to reduce problems, occasioned by environmental factors, then we analyzed physical influence factors of the infrared thermography. It is the aim of this study to suggest basic data with regard to method of estimation-system for deterioration of exterior wall in reinforced-concrete structures.

  • PDF

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

Study on The Corrosion Rate Monitoring of Steel in Concrete Using Electric resistance Sensor and Electrochemical Methods. (전기저항형 센서 및 전기화학적 방법을 이용한 철근콘크리트 구조물의 부식속도 측정 방법에 관한 연구)

  • 조용범;김용철;장상엽;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1185-1192
    • /
    • 2001
  • This paper reviews available techniques for monitoring corrosion of steel in concrete. The need for early detection and diagnosis of corrosion related deterioration in reinforced structures is widely acknowledged. This is particularly important in reinforced concrete structures on account of the economic and social significance of the problem. The current generally used on-site procedure for corrosion monitoring of reinforced structures employs a method of half-cell surface potential measurements. While the technique has provided a useful means of delineating areas of high or low corrosion risk, there are difficulties in its use and interpretation when assessing rates of deterioration. Electrochemical techniques are by far the most suitable for corrosion monitoring purpose and meet most of the requirements. The aim of this paper is to describe the electric resistance sensor(ER sensor) and electrochemical techniques employed to monitor and estimate corrosion rates of reinforcement. Early detection and diagnosis of corrosion hazards allows preventive measures to be taken, hence the typically expensive repair of severely deteriorated structures can be avoided.

  • PDF