• Title/Summary/Keyword: Concrete deck

Search Result 629, Processing Time 0.025 seconds

A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer (하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.

Temporary Stresses by Applying Construction Methods for Continuous Steel-Concrete Double Composite Box Girder Bridges (이중합성 연속 박스거더교에 대한 가설공법별 발생 단면력 검토)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.681-693
    • /
    • 2007
  • Construction techniques for continuous steel bridges were applied to steel-concrete double composite box girder bridges. Concrete depth and length at the bottom of the steel box in the negative moment region were determined by plastic moment region and negative moment region of the double composite section, respectively. Construction methods, such as crane lifting method, free cantilever method, and incremental launching method were used for the analysis of the construction stage. Two cases of the construction phase were considered and analyzed for the stress resultant of double composite girders. The behavior of the nose-deck elastic system was examined by three-dimensionless parameters, such as the nose length, the unit weight of the launching nose, and the flexural stiffness of the nose. The adoption of the launching nose has become an effective solution in the incremental launching of steel-concrete double composite box girder bridges.

Field Application Evaluation of Black VES-LMC (흑색 VES-LMC의 현장적용성 평가)

  • Jung, Won-Kyong;Kil, Yong-Su;Kim, Yong-Bin;Yun, Kyong-Ku
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-183
    • /
    • 2011
  • VES-LMC(very-early strength latex modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because it could be opened to the traffic after 3 hours of curing. However, the bright color of VES-LMC disturb driver's sigh. A black VES-LMC, matching to asphalt concrete, was developed and applied at a filed for driver's comfort and safety. The black VES-LMC included 2% carbon black in cement weight ratio. A series of performance evaluation for black VES-LMC was done in terms of field applicability, pavement color and temperature change. The field applicability test result showed that there were no change of workability, slump and air void, and the compressive strengthen developed more than 20MPa after 4 hours of placement. The thermal stress of black VES-LMC was smaller than that of OPC and asphalt concrete, which means the stability of black VES-LMC. The performance evaluation result showed that the black VES-LMC could prevent road icing at below zero temperatures and promote thawing at melting temperature.

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

An Experimental Study for Bond Stress between DFRCC and Carbon FRP Plank Used as a Permanent Formwork (영구거푸집으로 활용한 탄소섬유 FRP 판과 DFRCC 사이의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1687-1694
    • /
    • 2014
  • Recently FRP of carbon fibers is utilized as a repairing and reinforcing material for concrete structures. In this study, the bond performance between CFRP planks and ductile fiber reinforced cementitious composites was evaluated in order to develop a new system of concrete bridge deck to take advantage of the FRP planks of carbon fiber using as a permanent formwork. In order to strengthen the bonding between the FRP and cast-in-place concrete, an epoxy resin circulated in the market generally was fitted with a silica sand. The bond stress of ordinary concrete appeared in 2.11~5.43MPa and the bond stress of ductile fiber reinforced cementitious composites DC1 (RF4000) and DC2 (PP) respectively were 3.91~5.60MPa, 2.92~5.21MPa and the average bond stress of DC3 (RF4000+RSC15) and DC4 (PP+RSC15) were 4.80~5.58MPa, 5.57~5.89MPa.

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

An Experimental Study on Reusing of Waste Materials in Ligh-Weigh Composite Bridge Deck for Civil Structures (폐기물의 재이용과 경량 합성 상판 개발을 위한 실험적 연구)

  • 김경진;박제선;민창동;오오다도시아끼
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.123-130
    • /
    • 1994
  • In this paper, a development of composite bridge decks was proposed for design of civil and architectural structures to reuse the empty cans and plastics etc. The experimental specimens were made of rigid foamed urethane taking advantage of corrosionlessness in steel bridge decks, and simplicity in the field construction. 'Therefore, introducing the empty cans into the rigid foamed urethane, this experimentation have been carried out to demonstrate and evaluate the structural behavior by means of loading and vibration tests in composite bridge decks. Consequently, it was possible that had a good effect on the structural behavior by absorbing the strain due to the low elasticity of rigid foamed urethane, and not influence to cans in composite bridges.

Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.771-784
    • /
    • 2018
  • This study aims to investigate the stochastic response of isolated and non-isolated highway bridges subjected to spatially varying earthquake ground motion model. This model includes wave passage, incoherence and site response effects. The wave passage effect is examined by using various wave velocities. The incoherency effect is investigated by considering the Harichandran and Vanmarcke coherency model. The site response effect is considered by selecting homogeneous firm, medium and soft soil types where the bridge supports are constructed. The ground motion is described by power spectral density function and applied to each support point. Triple concave friction pendulum (TCFP) bearing which is more effective than other seismic isolation systems is used for seismic isolation. To implement seismic isolation procedure, TCFP bearing devices are placed at each of the support points of the deck. In the analysis, the bridge selected is a five-span featuring cast-in-place concrete box girder superstructure supported on reinforced concrete columns. Foundation supported highway bridge is regarded as three regions and compared its different situation in the stochastic analysis. The stochastic analyses results show that spatially varying ground motion has important effects on the stochastic response of the isolated and non-isolated bridges as long span structures.

Limit load equations for partially restrained RC slabs

  • Olufemi, O.O.;Cheung, K.L.;Hossain, K.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • The expertise required in the judicious use of nonlinear finite element (FE) packages for design-assistance purposes is not widely available to the average engineer, whose sole aim may be to obtain an estimate for a single design parameter, such as the limit load capacity of a structure. Such a parameter may be required for the design of a proposed reinforced concrete (RC) floor slab or bridge deck with a given set of geometrical and material details. This paper outlines a procedure for developing design-assistance equations for carrying out such predictions for partially restrained RC slabs under uniformly distributed loading condition, based on a database of FE results previously generated from a large number of 'numerical model' slabs. The developed equations have been used for predicting the peak loads of a number of experimental RC slabs having varying degrees of edge restraints; with results showing a reasonable degree of accuracy and low level of scatter. The simplicity of the equations makes them attractive and their successful use in the field of application reported in this paper suggest that the outlined procedure may also be extended to other classes of concrete structures.