• Title/Summary/Keyword: Concrete corrosion protection

Search Result 126, Processing Time 0.039 seconds

An Experimental Study on the Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitor (방청제에 의한 콘크리트 내의 철근 방식법에 관한 실험적 연구)

  • 배수호;정영수;권영우;김년산;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.710-713
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. The most economical method of them will be the corrosion protection method using corrosion inhibitor as concrete admixture. Therefore, the purpose of this research is to investigate the performance of corrosion protection of ordinary strength and high strength concrete using corrosion inhibitor, respectively. For this purpose, after manufacturing ordinary strength and high strength concrete with and without corrosion inhibitor, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles (140 day) of wetting ($65^{\circ}C$, 90% R.H.) and drying period ($15^{\circ}C$, 65% R.H.). As a result, th high strength concrete using corrosion inhibitor showed an excellent performance of corrosion protection.

  • PDF

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

Corrosion Measurements on Reinforcing Rebars in Reinforced Concrete Specimen (철근 콘크리트 시험편의 철근방식에 관한 측정법)

  • 이강균;장지원;한기훈;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.281-286
    • /
    • 1997
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are exposed to salts an chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely effect the durability of concrete structures. The objective of this research is to develop a durable concrete by investigating the corrosion resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors and etc. A tow-year verification test on various corrosion protection systems has been doing in the laboratory and at the seaside. Corrosion investigations on reinforcement steel are now under progress for more than 180 concrete specimen. Corrosion-related measurements include macrocell corrosion current, instant-off voltage between corroding and noncorroding reinforcement, chloride contents, the corroded surface areas on the reinforcement steel, and etc. A low level of corrosion is investigated on reinforcement steels in concrete specimen made with corrosion inhibitors or applied aqueous impregnating corrosion inhibitors into their surface, even though high chloride contents of concrete specimen.

  • PDF

An Experimental Study on the Corrosion Characteristics of Reinforcing Steel in Concrete by the Accelerated Corrosion Test (부식촉진시험에 의한 콘크리트 내의 철근의 부식특성에 관한 실험적 연구)

  • 배수호;정영수;김년산;권영우;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.503-507
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. In this study, the performance of corrosion protection was investigated for the test specimens using corrosion inhibitors and cathodic protection, respectively. For this purpose, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles(140 days) of wetting($65^{\circ}C$, 90% R.H) and drying period($15^{\circ}C$, 65% R.H) for the test specimens. As a result, it can be concluded from the test that the effect of corrosion inhibitor was found to be variable with products, the cathodic protection method was found to be independent of salt concentration in concrete.

  • PDF

A Study on the Application of Cathodic Protection for the Repair of Marine Concrete Structure (해양콘크리트 구조물의 보수를 위한 전기방식의 응용에 대한 고찰)

  • 문한영;김성수;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.229-234
    • /
    • 1997
  • Recently many concrete structures have been deteriorated due to the corrosion of reinforcing steel caused by chloride attack. The chloride attack causes very rapid and serious deterioration. Therefore, It is necessary for highly reliable method to stop the corrosion. Especially, on damaged concrete, it is difficult to stop the progress of steel corrosion that has already occured in concrete. The indirect method of corrosion protection such as eliminating corrosion factors by coating would be hard to be expected for complete stop of corrosion. In this paper, we applied the cathodic protection to chloride attacked marine concrete structures and verified the effect in addition to application of cathodic protection.

  • PDF

Lifetime of Insoluble Anode for Cathodic Protection on Concrete Construction

  • Sohn, Kicheon;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.56-59
    • /
    • 2005
  • In rebar concrete structure, the corrosion of rebar can arise the deterioration of concrete structure and may affect the safety of the whole system. Recently, several methods for corrosion protection have been used and are more important for concrete structure using the sand including chloride ion. Among several protections, electrical cathodic protection has been expected to be one of the most useful methods in corrosion protection for reinforcement of concrete structures. The anode for cathodic protection needs high current density, high corrosion resistance and low overvoltage. To fill up the special qualities, the insoluble anodes were developed and these anodes were coated with metal oxide of $TiO_2$, $ZrO_2$, $RuO_2$, and $IrO_2$. Lifetime of these anodes can be one of the important factors affecting the lifetime of concrete structure in cathodic protection. In this work, several anodes were made by sol-gel method and thermal decomposition method and the lifetime of these anodes was evaluated by NACE international standard test method, TM 0294-94. Also, we did analyze the properties of coated metal oxides.

Corrosion Level of RC Concrete Specimen Intermittently Attacked by Sea Water (해수간헐침투되는 철근콘크리트의 부식도 평가)

  • 정철희;정영수;최응규;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.207-212
    • /
    • 1996
  • Recently, massive concrete structures exposed to salt from ocean marine environments, or from winter deicing. The corrosion caused by chloride-penetration may affect severey the durability and service life of such a concretestructures. Thus, it is necessary to develop durable concrete to enhance the corrosion resistance. In this study, we investigate the usage of adequate corrosion-protection materials in order to reduce permability-coefficient of concrete and method of enhancing the durability of concrete structures using by penetrating corrosion-protection materials.

  • PDF

A Study on the Effect of the ICCP System in Reinforced Concrete Specimens of Slab Type

  • Jeong, Jin-A;Ko, Kwon-Heum;Kim, Mun-Su;Lee, Du-Hyeong
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.272-278
    • /
    • 2018
  • Reinforced concrete (RC) has been used as a construction material in various environments, such as airports, bridges, and ocean concrete structures, etc. Over time, however, rebar in the concrete is prone to corrosion from environmental forces and structural defects of the concrete. Cathodic protection (CP) was invented to prevent problems with corrosion and is widely used for different applications. Cathodic protection is divided into two types: sacrificial anode cathodic protection (SACP) and impressed current cathodic protection (ICCP). There are several limitations to the use of sacrificial anode cathodic protection in complex reinforced concrete structures, including concrete resistivity, throwing power of the CP, and environmental conditions. These limitations can affect the protection performance of SACP. Therefore, we used impressed current cathodic protection in our study. We tested Ti-Mesh, Ti-Rod, and Ti-Ribbon anodes in slab type reinforced concrete specimens. Electrochemical tests were conducted to confirm the impressed current cathodic protection performance under different environmental conditions.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Research of Steel Corrosion and Corrosion Protection System for Reinforcing Steels in Concrete Exposed to Chloride Environments. (염해환경하 철근콘크리트의 철근 부식 및 방식기법 연구)

  • 문홍식;이상국;송호진;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.653-658
    • /
    • 2001
  • Recent long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. Thus, it needs to analyze the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steel in concrete is one of the major factors for the durability of concrete structures. The objective of this experimental study is to investigate the performance of impressed current system and corrosion inhibitors for the corrosion protection of reinforced concrete structures. Concrete test specimens were made with various test parameters, such as cover depth, steel diameter, compressive strength, direction and frequency of notch. For the efficient evaluation of these corrosion protection systems, these tests have been carried out in the shore.

  • PDF