• 제목/요약/키워드: Concrete bridges

Search Result 1,181, Processing Time 0.025 seconds

Seismic Performance Assessment of RC Bridges using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 철근콘크리트 교량의 내진성능평가)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.31-38
    • /
    • 2006
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridges using nonlinear finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method is applied to reinforced concrete bridges and compared.

VR-based education system for inspection of concrete bridges

  • Miyamoto, Ayaho;Konno, Masa-Aki;Rissanen, Tommi
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • In this study, a novel education system for inspection of concrete bridges is presented. The new education approach uses virtual reality (VR) and three-dimensional computer graphics (3DCG) in training engineers to become bridge inspection specialists. The slow time-dependent deterioration of concrete bridges can be reproduced on the computer screen in any chosen time frame, thus providing the trainees with illustrative and educative insight into the deterioration problem. In the proposed VR/3DCG approach a three-dimensional model of concrete bridge, including surfaces, viewpoints and walkthrough paths is created. With the help of this virtual bridge model, an experienced bridge inspection specialist teaches the different deterioration phenomena of concrete bridges to the trainees. The new system was tested, and the inspection results from the case bridge showed that in comparison with the traditional Japanese bridge inspection education system, the new system gives better results. In addition to the improvement of quality of bridge inspections, the new VR/3DCG system-based education brings along some other, more intangible benefits.

Economic Analysis of Reinforced Concrete Bridges Considering Performance Evalution (성능평가를 고려한 철근콘크리트교의 경제성 분석)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Recently, it is really concerned about corrosion and aging of reinforced concrete bridges. Corrosional steel reinforcing in concrete affects not only safety of bridges structure but also bending strength of reinforced concrete's member. Rate of corrosion, characteristic of bending strength, and economical evaluation aren't clear in reinforced concrete, considering performance evaluation. The purpose of study is as follows. It studies about ability of resistance's strength and cost of life cycle according to reduction of steel reinforcing's corrosion. Moreover, it shows calculating formula of bending strength with corrosion of current rate and exactly evaluates about the rest life at corrosional reinforced concrete bridges.

Field Test on Damping Value of Bridge in High-speed Railway (고속전철 교량의 감쇠값 산정을 위한 현장 실험)

  • 최은석;신호상;곽종원;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.751-756
    • /
    • 2000
  • The dynamic characteristics such as natural frequency, mode shape and damping ratio are most important parameters in the high-speed railway bridges rather than general roadway bridges. Also, the need to know the dynamic behavior of bridges greatly increased in recent years. In the early of 1990s, to design the high-speed railway bridges, damping ratio recommended in general code was 2.5~7.5%. However, these values were not applied in all cases. Therefore, obtaining the damping value of specific structures is important to get the correct variable for design of high-speed railway bridges. The purpose of this study is mainly to obtain the damping ratio of high-speed railway bridges. The average damping ratio of high-speed railway bridges evaluated from a field test is about 2.4%.

  • PDF

Lateral ultimate behavior of prestressed concrete box girder bridges (프리스트레스트 콘크리트 박스거더의 횡방향 극한거동 실험 연구)

  • Oh, Byung-Hwan;Choi, Young-Cheol;Lee, Seung-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.

  • PDF

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.

An Experimental Method for the Evaluation of Dead Load Stress in Existing Concrete Bridges (콘크리트 교량의 고정하중 응력에 관한 실험적 측정방법)

  • Park, Dae Sung;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.701-706
    • /
    • 2006
  • This paper describes an attempt to develop a practical method for the measurement of dead load stress in existing concrete bridges. In most cases, the dead load stress was determined by various theoretical calculations. However, the theoretical calculation cannot always provide a sufficient information on the current stress state due to lots of uncertainty. The key idea incorporated with this paper is the partial sectioning method which is able to estimate current stress state in concrete bridges subjected to dead load. The proposed method is applied to the safety assessment of actual concrete bridges and the applicability of this system is investigated.

Performance Evaluation of Prestressed Concrete Girder Bridges by External Tendon and Continuous Beams (외부긴장재와 연속화에 의한 프리스트레스트 콘크리트 거더교의 성능평가)

  • 박승범;방명석;홍석주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.681-684
    • /
    • 1999
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing.

  • PDF

A Study on the Design Meghod for PSC I Girders with additional Prestress (프리트스레스를 단계적으로 도입하는 PSC I형 거더의 설계에 관한 연구)

  • 한만엽;김양현;진경석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.375-380
    • /
    • 1999
  • It is required efficient section shape like bulb-tee girders with high strength concrete to construct long span bridges economically. However, the trpical design method for PSC I-girders include bulb-tees, the concrete girder prestressed only one time at same time. But in this paper, new design method prestress increases as each load-stress stage. The incrementally prestressed concrete (IPC) girders can reduce the required area of grider section and extend span length by additional prestress. So it is able to construct long span bridges economically by using IPC girders.

  • PDF