• Title/Summary/Keyword: Concrete bridges

Search Result 1,181, Processing Time 0.022 seconds

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Probabilistic Analysis for Longitudinal Displacement due to Skew Angle of Bridges under Scenario Earthquakes (모의 지진하중에 의한 교량의 사가에 따른 축방향변위에 대한 확률론적 해석)

  • 전환석;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.553-558
    • /
    • 1998
  • Since the mid of the 20th century in the world, it has been observed that the number of minor or moderate earthquake motions tend to be increased year by year. Owing to the topographical condition, moreover, large numbers of skew bridges have been constructed for the requirements of more than DB18 ton bridge in Korea. It has been also observed from foreign countries that lots of superstructures collapse in bridge were occurred in previous earthquakes, inclusive of 1995 Kobe earthquake. This is caused by a relative displacement between the upper and lower structure of bridge by the earthquake and the rotation with respect to the vertical axis of skew bridges, which were subjected to and earthquake motion. In this study, the probabilistic analysis of unseating failure of skew bridges under scenario earthquake has been carried out by evaluating the longitudinal displacement of skew bridges.

  • PDF

A Study on Inspection Procedures and Databank System of Bridges (교량의 안전점검 및 Database화)

  • 홍석희;도영태;김진수;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.344-349
    • /
    • 1995
  • In recent years, the most common bridges are showed a decrease of duriability in quick times of 10~20 years after construction. Therefore, the project of maintenance and management is located a important subject more and more. The maintanence-management of bridges begin from inspection of bridge and this accupy more important part with repairing-reinforcing method. In a point of view liked this, the purpose of this paper is to propose the most rational and useful method for the maintance-management of bridges with comparing and examming inspection kind inspection frequency and judge standard etc. that manage the each organization of Korea and Japan. Also in the bases of this result, hereafter, it will propose the standard idea for the organization etc. of databank of the bridges.

  • PDF

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

Behavior of PSC BOX Girder Bridges under Temperature Load (PSC 박스거더교의 온도하중에 대한 거동 연구)

  • 강상규;이형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1157-1162
    • /
    • 2000
  • Transverse stress and longitudinal crack which are induced by temperature difference in box-girder sections and slab of which box-girder is composed have an important effect on endurance and economical efficiency of bridges. The study on longitudinal behavior of bridges which are subject to thermal load is reflected on the design of bridges. But, the study on transverse behavior of bridges has been performed just recently in foreign countries of finding the cause of longitudinal crack and in Korea, has not been tried in spite of large temperature variance due to geographical condition. This study examines temperature distribution feature in box-girder sections and bridge behavior due to thermal load, with measuring temperature distribution and stress of PSC box-girder bridge which is being constructed actually, and investigates appropriateness of design thermal load of highway bridge design code.

  • PDF

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

Evaluation Test for the Bridges Retrofitted Seismically with LRB (LRB로 내진보강된 교량의 성능검증 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and isolators for the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

  • PDF

Rapid Corrosion Test on Reinforcing Steels in Chloride-Penetrating Concrete Structures with Various Crack Patterns (염화물 침투 콘크리트의 균열 특성에 관한 철근부식에 관한 연구)

  • 류금성;정영수;유환구;김국한;조창백
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.693-696
    • /
    • 1999
  • Reinforced concrete is, in general, known as high durability construction material under normal environments due to strong alkalinity of cement. It is , however, well known that moderate or minor cracks in reinforced concrete should be most serious causes to deteriorate the durability of RC structures. Furthermore, chloride contents penetrating through unexpected cracks in reinforced concrete bridges get to weaken corrosion resistance of reinforcement steel in concrete and than to accelerate the deterioration of concrete durability. The objective of this experimental research is 1) to evaluate the effect of various corrosion protection system for reinforced concrete specimens with moderate or minor cracks which are exposed to cyclic wet and dry seawater, and then 2) to develop effective corrosion protection system for reinforced concrete bridges under the exposure of various detrimental environments such as seawater, deicing and etc.

  • PDF

Design of P.C. Beam Bridge using High Strength Concrete (고강도 콘크리트를 사용한 P.C. Beam교의 설계)

  • 강상규;윤석구;이형준;정원기;이규정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • The use of high strength concrete in the fabrication and construction of prestressed concrete beam bridges can result in the increase of girder spacings for standard shapes, as well as the increase of span lengths. The increase of girder spacings corresponds to the reduction of the required number of girders. This study shows that the use of high strength concrete make prestressed concrete beam bridges the economical alternative to any other bridge types. Also, this study has the purpose of giving aids to design of prestressed concrete beam. To achieve this purpose this study provides the plots resulting from research on relationships between the concrete strength of prestressed concrete beam, girder spacing and the number of strands in various span lengths.

  • PDF