• 제목/요약/키워드: Concrete Surface Repair

검색결과 127건 처리시간 0.03초

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Post-Damage Repair of Prestressed Concrete Girders

  • Ramseyer, Chris;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.199-207
    • /
    • 2012
  • Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

보수대상 구조 표면 상태를 고려한 UHPC 기반 콘크리트 보수재료의 부착 성능 평가 (Evaluation of Bonding Performance in UHPC-based Concrete Repair Materials Considering Surface of Structure Subject to Repair)

  • 윤용식;김경철;임광모;안기홍;류금성;고경택
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.433-439
    • /
    • 2023
  • 본 연구에서는 높은 역학적, 내구적 성능이 확보된 UHPC(Ultra High Performance Concrete) 배합을 기반으로 보수재료를 개발하기 위해 일반 콘크리트 보수면을 대상으로 부착성능을 평가하였다. 보수 대상 모체의 표면의 거칠기와 습윤 상태 그리고 보수재료 배합에 폴리머 혼입 및 PP, PVA 섬유 사용을 고려하여 총 10가지 시험 변수를 적용하였다. 폴리머를 혼입함에 따라 큰 폭의 강도 저하가 발생하였으며 이는 워커빌리티 조정을 위해 추가로 사용한 감수제의 영향으로 사료된다. 또한 플라스틱 계열 섬유를 혼입함에 따라 플로우가 최대 13.8 % 감소하였다. 부착면의 상태를 고려한 보수재료의 부착 강도 평가 결과 UHPC 기반 보수재료를 사용하는 경우 보수 대상 모체의 표면이 건전하다면 별도의 면 처리 작업 없이 높은 부착성능을 확보할 수 있는 것으로 판단된다. 또한 UHPC 기반 보수재료는 부착면의 습윤하더라도 높은 부착성능을 나타내었다. 추후 UHPC 기반 보수재료의 개발을 위해 숏크리트 적용과 구배 타설에 대한 연구가 진행될 예정이며 콘크리트 구조 보수재료로써의 경제성과 성능 확보를 위해 지속적인 보수재료 배합 개선이 수행될 계획이다.

아파트 리모델링을 위한 표면보수공법후 콘크리트의 탄산화 진행에 관한 연구 (A Study on Carbonation Progress of Concrete After Surface Repair method for remodeing apartment)

  • 이형민;성명진;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.15-16
    • /
    • 2014
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat;Karima Gadri;Bassam A. Tayeh;Ahmed M. Maglad;Abdelhamid Guettala
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.431-444
    • /
    • 2023
  • This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

콘크리트 보수용 폴리머 복합재료의 접착강도 특성 (Adhesion Properties of Polymer Composite Materials for Concrete Repair)

  • 지경용;연규석;이윤수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.330-335
    • /
    • 1998
  • This research was conducted to evaluate the adhesion in tension of the polymer mortars for cement concrete repair. Various polymer types, binder ratios, and wet/dry conditions of the surface were considered in this study. Styrene-butadiene rubber (SBR) and ethylen vinyl acetate (EVA) used for polymer cement mortars. Epoxy resin (EP), and unsaturated polyester resin (UP) were used for polymer mertars. Adhesion in tension for the dry condition of the substrate surface was higher than that for the wet condition of the substrate surface under the same binder ratio. Therefore, in repairing concrete, the dry surface condition was effective on adhesion.

  • PDF

탄산화가 진행된 기존 RC구조물의 표면보수공법 적용 후 FDM 해석을 이용한 탄산화 진행 예측 연구 (A Study on Predicting Progress Carbonation using FDM Analysis After Carbonated RC Structures Surface Repair)

  • 이형민;이한승;김영관
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2015
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. in other words, of the hydrates in the cement pastes, the one which reacts with readily is Ca(OH)2, the product of the reaction being CaCO3 and which decreases the alkalinity of concrete. Consequently, RC structure is deteriorated due to steel corrosion in concrete. As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

섬유혼입 고강도 콘크리트의 화재 후 표면보수재료의 종류에 따른 중성화 저항성 비교·평가에 관한 연구 (A Study on the Evaluation of Carbonation Resistance of Fire Damaged Fiber-Reinforced High Strength Concrete with the Type of Surface Repair Materials)

  • 심상락;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.81-82
    • /
    • 2020
  • In this study, after applying a silicate-based impregnation and polymer-based coating to fire damaged high strength concrete, carbonation resistance was evaluated to compare and evaluate the carbonation depth according to the type of surface repair materials. As a result of the experiment, it was confirmed that the carbonation resistance was increased in the case of the concrete with the surface repair materials compared to the control specimen without the surface repair materials. In particular, in the case of the polymer-based coating agent, it was confirmed that the carbonation hardly progressed.

  • PDF

탄산화가 진행된 기존 RC구조물의 보수공법 적용후 철근의 부식확률 평가에 관한 연구 (A Study on probability of rebar corrosion After repair method of carbonated existing RC structures)

  • 이형민;김상열;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2015
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

공동주택에 발생되는 0.3mm미만 미세균열의 보수공법 적용을 위한 근거 마련 기초연구 (Repair method application for micro-cracks of less than 0.3 mm width in residential apartment buildings)

  • 박소영;유재용;김수연;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2018
  • Cracks are typical defects that occur in concrete structures. When cracks occur in the structure, durability reduction, concrete neutralization, and steel corrosion cause functional safety problems. In order to prevent such cracks, surface repair method is performed for cracks smaller than 0.3 mm and rechargeable method is performed for cracks larger than 0.3 mm. However, even if it is applied by the surface repair method at less than 0.3 mm, re-leakage cracks continue to occur. Recently, the Supreme Court ruled that the rechargeable method should be applied to cracks less than 0.3mm in order to reduce the occurrence of defects. However, it was considered that the repair fees were too high relative to the observed defect rate, resulting in a necessitation of modifying the existing construction analysis administration standards. This study analyzes the differences in the subjective views on the durability degradation with regards to surface repair methods in concrete structures.

  • PDF