• 제목/요약/키워드: Concrete Structures Repair

검색결과 365건 처리시간 0.027초

화재피해 콘크리트의 유지관리 및 시공성능 향상을 위한 표준화방안 (The Standardized Methods for Improvement of Maintenance and Performance Construction of Deterioration caused by Fire damage)

  • 서동구;김동은;김봉찬;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.16-18
    • /
    • 2013
  • A fire outbreak in a reinforcement concrete structure looses the organism by different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So, concrete reinforcement structure is damaged partial or whole structure system. Therefore accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, consider case of investigation methods and repair work in fire damaged structure concrete.

  • PDF

4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발 (Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification)

  • 이종길;김장호;박석균;김진근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.153-161
    • /
    • 2010
  • 1970년대에 콘크리트를 기반으로 지어진 많은 구조물과 빌딩은 안전성과 사용성을 고려하여 무수히 많은 연구를 현재까지 진행해 왔으나, 설계강도 보다 낮은 최대강도를 보이고 있다. 현재 노후화된 콘크리트 구조물들에 대한 다양한 보수 보강 공법이 개발되어 적용되고 있지만 기존 연구들은 구조물의 특성에 대해서는 고려하지 않고, 단지 기존 부재와 보수 재료의 부착에 관한 연구와 기존 부재를 효과적으로 보강하기 위한 새로운 방법을 개발하는 연구는 미흡한 실정이다. 따라서 본 연구는 보수 보강 재료를 이용한 효율적인 강도증진 방법에 대한 연구, 보강 재료와 기존 부재 사이의 거동에 대해 부족했던 연구를 보완하고자 한다. 또한 고강도 콘크리트는 높은 압축강도를 발현하기 때문에 부재의 단면을 축소시킬 뿐만 아니라 구조물의 자중 또한 감소시킬 수 있으므로 거대한 구조물 건설에 사용되고 있다. 고강도 콘크리트의 사용이 점차 증가하는 추세이지만 고강도 콘크리트를 이용한 구조물의 보수 보강에 대한 방법 연구 역시 미진한 실정이다. 따라서 본 연구에서는 효과적인 고강도 콘크리트 기둥에 대한 보수 보강 방법을 개발하고자 한다. 본 연구에서는 사각단명 형상을 가진 기둥을 팔각단면으로 형상 변형을 통해 CFS로 보수 보강하여 단면 형상이 변함에 따른 효과를 파악하고, CFS로 보강된 고강도 콘크리트(HSC) 기둥의 강도 증대 효과와 파괴 거동에 대해 파악하고자 한다.

철근콘크리트용 FRP Box 휨 보강재의 형상 설계 및 거동 평가 (Shape Design and Performance Evaluation of FRP Box-type Stiffener For the Application of RC Structure)

  • 권민호;정우영
    • 복합신소재구조학회 논문집
    • /
    • 제4권1호
    • /
    • pp.40-46
    • /
    • 2013
  • This paper presents the design, fabrication and performance of a reinforced concrete beam strengthened by GFRP box plate and its possibility for structural rehabilitations. The load capacity, ductility and failure mode of reinforced concrete structures strengthened by FRP box plate were investigated and compared with traditional FRP plate strengthening method. This is intended to assess the feasibility of using FRP box plate for repair and strengthening of damaged RC beams. A series of four-point bending tests were conducted on RC beams with or without strengthening FRP systems the influence of concrete cover thickness on the performance of overall stiffness of the structure. The parameters obtained by the experimental studies were the stiffness, strength, crack width and pattern, failure mode, respectively. The test yielded complete load-deflection curves from which the increase in load capacity and the failure mode was evaluated.

Damage characterization of beam-column joints reinforced with GFRP under reversed cyclic loading

  • Said, A.M.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.443-455
    • /
    • 2009
  • The use of fiber reinforced polymer (FRP) reinforcement in concrete structures has been on the rise due to its advantages over conventional steel reinforcement such as corrosion. Reinforcing steel corrosion has been the primary cause of deterioration of reinforced concrete (RC) structures, resulting in tremendous annual repair costs. One application of FRP reinforcement to be further explored is its use in RC frames. Nonetheless, due to FRP's inherently elastic behavior, FRP-reinforced (FRP-RC) members exhibit low ductility and energy dissipation as well as different damage mechanisms. Furthermore, current design standards for FRP-RC structures do not address seismic design in which the beam-column joint is a key issue. During an earthquake, the safety of beam-column joints is essential to the whole structure integrity. Thus, research is needed to gain better understanding of the behavior of FRP-RC structures and their damage mechanisms under seismic loading. In this study, two full-scale beam-column joint specimens reinforced with steel and GFRP configurations were tested under quasi-static loading. The control steel-reinforced specimen was detailed according to current design code provisions. The GFRP-RC specimen was detailed in a similar scheme. The damage in the two specimens is characterized to compare their performance under simulated seismic loading.

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

유실저항성 시험방법을 이용한 유속조건에서의 질량변화 추이 연구 합성고무계 보수재료를 중심으로- (A Study on the Change of Mass in Flow Velocity Using Loss Resistane Test Method - Using Synthetic rubber system Repair material -)

  • 박소영;장보;김수연;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2017
  • Tests are conducted according to the ISO TS 16774, Part 3 standard for quality management of leakage repair materials used in cracks in underground concrete structures. These test methods are performed indirectly using a nonwoven fabric on a chalet containing leak repair materials. However, it is considered that it is appropriate to verify the resistance of the repair material, which is required to be applied directly to the cracks in the actual field and to exhibit the resistance of the flow velocity. In this study, mass change was measured by using nonwoven fabric and nonwoven fabric. As a result, both methods showed an increase in mass, which indicated that the maintenance material itself contained a large amount of water, and that the mass change occurred depending on the drying state. Also, depending on the use of nonwoven fabric, the error due to the indirect test could not be ruled out. Therefore, further verification is needed, and it is considered that the test for change of mass reduction measurement is necessary according to the drying time of other types of the same series.

  • PDF

강박판 및 탄소섬유판으로 전단보강된 철근 콘크리트 보의 거동에 관한 실험적 연구 (An Experimental Study on the Behaviors of RC Beams Strengthened in Shear by Thin Steel Plate and Carbon Fiber Sheet)

  • 최종수;이대형;손창호;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.219-223
    • /
    • 1995
  • Since the mid of 1970's, the construction of infrastructure has been booming and accelerating to keep up with rapid economic growth. Fast achievement of most construction activities has caused unfavorable effects of civil petitions associated with damages and nuisances due to last hasty works. it is well known that the falling down of Sungsoo bridge and the collapse of Sampoong department and other structures have occurred because of the construction not conforming with the specification, and thereby incurred enormous loss of life and property. Now a days. a periodic inspection and maintenance have been strongly interested on aged RC structures, of repair and reinforcement technique in the country, most repairing and reinforcing works have been performed on the basis of the guidance of few experienced local company in this field.

  • PDF

아질산칼슘과 탄산나노버블수를 사용한 모르타르의 성능 평가 (The Performance Evaluation of Mortar Using Calcium Nitrite and CO2 Nano-Bubble Water)

  • 김호진;김진성;최형길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2020
  • This study investigated the performance evaluation of polymer cement mortar for repairing concrete structures using calcium nitrite(Ca(NO2)2) and CO2 nano-bubble mixing water to develop section-restoration methods for the repair and reinforcement of cracks. The evaluation items were strength and microstructure analysis at 28 days of age according to the change in the amount of calcium nitrite and the use of CO2 nano-bubble water. As a result of the experiment, it was confirmed that the performance of polymer cement mortar for repairing concrete structures was improved by the generation of nitrite-based hydration products when calcium nitrite and CO2 nano-bubble water were used.

  • PDF

Performance indicator of the atmospheric corrosion monitor and concrete corrosion sensors in Kuwait field research station

  • Husain, A.;Al-Bahar, Suad Kh.;Salam, Safaa A. Abdul
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.981-994
    • /
    • 2016
  • Two field research stations based upon atmospheric corrosivity monitoring combined with reinforced concrete corrosion rate sensors have been established in Kuwait. This was established for the purpose of remote monitoring of building materials performance for concrete under Kuwait atmospheric environment. The two field research sites for concrete have been based upon an outcome from a research investigation intended for monitoring the atmospheric corrosivity from weathering station distributed in eight areas, and in different regions in Kuwait. Data on corrosivity measurements are essential for the development of specification of an optimized corrosion resistance system for reinforced concrete manufactured products. This study aims to optimize, characterize, and utilize long-term concrete structural health monitoring through on line corrosion measurement and to determine the feasibility and viability of the integrated anode ladder corrosion sensors embedded in concrete. The atmospheric corrosivity categories supported with GSM remote data acquisition system from eight corrosion monitoring stations at different regions in Kuwait are being classified according to standard ISO 9223. The two nominated field sites where based upon time of wetness and bimetallic corrosion rate from atmospheric data where metals and rebar's concrete are likely to be used. Eight concrete blocks with embeddable anodic ladder corrosion sensors were placed in the atmospheric zone adjacent to the sea shore at KISR site. The anodic ladder corrosion rate sensors for concrete were installed to provide an early warning system on prediction of the corrosion propagation and on developing new insights on the long-term durability performance and repair of concrete structures to lower labor cost. The results show the atmospheric corrosivity data of the environment and the feasibility of data retrieval of the corrosion potential of concrete from the embeddable sets of anodic ladder corrosion sensors.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.