• Title/Summary/Keyword: Concrete Pumping

Search Result 74, Processing Time 0.03 seconds

A Fundamental Study on development of Ultra-Flow Concrete - part2.The Preformance estimation of Fresh Concrete - (초유동 콘크리트의 개발에 관한 기초적 연구 -제 2보 : Fresh 콘크리트의 성능평가 -)

  • 김화중;김재훈;박정민;최신호;이승조;김태곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.48-53
    • /
    • 1995
  • Recently, work of construction industry is not enough to do in tamping because of a lack of expert, advanced-age of worker, increase of structure of high-dengity arrangment and machanization of concrete pumping method Accordingly it is required for high-qualuily concrete with excellent flowability, Self-placeability and regregation registance. In this point of view, this study is investigated for requiremend properties of ultar-flow concrete using dimestic material as for development of Ultra-Flow concrete in the side of material

  • PDF

Void Detection Under Concrete Pavement Using Nondestructive Testing (비파괴시험을 통한 콘크리트포장 하부 공동조사)

  • 유택석;한승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.781-786
    • /
    • 1999
  • One of the major causes of concrete pavement deterioration is the loss of support due to erosion and pumping of subbase and subgrade. In this study, procedures for the detection of voids under concrete pavement slab are presented using nondestructive test method such as FWD(Falling Weight Deflectometer) and GPR(Ground Penetration Radar). The deflection responses of concrete slab obtained in FWD field test are analysed for determining the presence of void. Also, reflection responses in GPR test are interpreted. It was concluded that these procedures are available for detecting the viods under concrete pavement slab.

  • PDF

Study on Filling Capacity of Self-Consolidating Concrete for Modular LNG Storage Tank (모듈형 LNG 저장탱크용 자기 충전 콘크리트의 충전 성능평가 실용화 연구)

  • Lee, Dong Kyu;Lee, Keon Woo;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.50-57
    • /
    • 2018
  • The purpose of this study is to evaluate the practical application of the self consolidating concrete for the steel concrete pannel (SCP) in module LNG storage tank proposed in the previous research. We evaluated the physical properties and filling performance of developed concrete for the SCP module. First, a slump flow test was conducted to evaluate the performance of the proposed guidelines for the filling test. As a result, all of the concrete used showed satisfactory performance. Based on the results of the previous study, it was found that the reliability of the required time measured by the $T_{500}$ test and the rheometer results measured before and after pumping was 0.94 which means the separation and blocking should not occur. The L-box test and the U-box test were conducted before and after pumping. All of the guidelines suggested showed satisfactory performance. SCP module for LNG storage tanks was fabricated on actual size scale to evaluate the practical application at the final site. As a result, it was confirmed that satisfactory filling performance was obtained in all the specimens.

Engineering Properties of FRC with Combined Fibers Before and After the Pumping (혼합 섬유를 사용한 FRC의 펌프압송 전·후의 공학적 특성 분석)

  • Lee, Jae-Hyun;Park, Yong-Jun;Lee, Hong-Gyu;Kim, Dae-Geon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.130-131
    • /
    • 2015
  • These days, as the usage of explosive gas is increased, the demand of safety of explosive gas is increased. As a suggestion of protection against the explosive gas, the research on application of fiber-reinforced concrete has been conducted. In this research, therefore, to evaluate the constructability of anti-explosive concrete, the engineering properties of the FRC after pumping is studied.

  • PDF

The reduction of Tire pattern noise by using pitch sequence (피치배열을 이용한 타이어 패턴노이즈 저감)

  • Hwang S.W.;Bang M.J.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.611-614
    • /
    • 2005
  • It is well known that tire tread pattern has much influence on the tire pattern noise. The paper describes the method of pattern noise reduction by using the pitch sequence, both on the smooth asphalt roads and on the trenched concrete roads. The noise of tire is classified as either airborne or structure borne noise. Pattern noise through the airborne is considered as a major noise source at high speeds. As block impacting and air pumping by tread patterns are major noise source, tire pattern noise can be greatly influenced by optimal pitch sequence. The goal of this paper is to provide tire engineers with pitch sequence to reduce pattern noise effectively.

  • PDF

An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix (폴리믹스 혼입 고강도 콘크리트의 펌프압송 성상에 관한 실험적 연구)

  • Lee, Joo-Ho;Moon, Hyung-Jae;Kim, Jeong-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.509-516
    • /
    • 2012
  • The aims of this research is to develop a fire resistant admixture to enhance high-pressured pumping of high-strength concrete (HSC) with a compressive strength of 60~80 MPa. Generally, the efficiency of HSC high-pressured pumping is dramatically reduced due to entanglement of short fibers added to prevent fire spalling. Therefore, the fire resistant admixture that can facilitate pumping of fire resistant HSC is urgently needed presently. The fire resistant HSC mix is comprised of Polypropylene fiber, Nylon fiber and Polymer powder. The test results showed that the slump-flow was improved by approximately 70% of the HSC without fire resistant admixture. However, the air void content was increased slightly due to the addition. The standard design compressive strength at 28-days was satisfied, while its flexural strength was similar to the concrete without the admixture. Since the flexural strength was 12~15% of its compressive strength, the general trend of flexural to compressive strength ratio in normal concrete was maintained. Even though its elastic modulus was decreased by adding the admixture, the study results showed that the concrete can be used for construction since all of the test results exceeded the code requirements.

A Thermal Conductivity Model for Hydrating Concrete Pavements

  • Jeong Jin-Hoon;Kim Nakseok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.125-129
    • /
    • 2004
  • Hydrating concrete pavement is typically subjected to temperature-induced stresses that drive cracking mechanisms at early concrete ages. Undesired cracking plays a key role in the long-term performance of concrete pavement systems. The loss of support beneath the concrete pavement due to curling caused by temperature changes in the pavement may induce several significant distresses such as punch out pumping, and erosion. The effect of temperature on these distress mechanisms is both significant and intricate. Because thermal conductivity dominates temperature flow in hydrating concrete over time, this material property is back-calculated by transforming governing equation of heat transfer and test data measured in laboratory. Theoretically, the back- calculated thermal conductivity simulates the heat movements in concrete very accurately. Therefore, the back- calculated thermal conductivity can be used to calibrate concrete temperature predicted by models.

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Time-Dependent Deformation and Durability of High-Strength Concrete over 60MPa for PSC Bridges (PSC 교량용 설계강도 60MPa 이상 고강도 콘크리트의 실용화를 위한 시간의존적 변형 및 내구성에 관한 연구)

  • Yang, Jun-Mo;Lee, Joo-Ha;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.5-8
    • /
    • 2006
  • In this study, various fundamental experiments including durability and time-dependent deformation are performed to compile a database for a utilization of high-strength concrete for PSC bridges. In the mix design, concrete strength at early age when prestressing forces are introduced to the PSC member and slumpflow suitable for pumping of concrete are considered to make a concrete fit for PSC bridges. The main parameters investigated are the kinds and replacement ratios of mineral admixtures and low-heat cement. Experimental tests on durability include penetration of chloride ions, freezing-thawing, combined deterioration, and simple adiabatic temperature rise test. In addition, time-dependent deformation such as creep, drying and autogenous shrinkage, which is particularly important factor in the design and construction of PSC bridges, is tested and analyzed.

  • PDF