• 제목/요약/키워드: Concrete Hydration

검색결과 1,005건 처리시간 0.028초

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

고강도 매스 콘크리트-보의 수화열 및 강도특성 (Hydration Heat and Strength Properties of Mass Concrete Transfer Girder)

  • 강연우;김규용;김순묵;김수봉;한장훈;정재영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.28-29
    • /
    • 2013
  • When concrete was hardened, it should had considered a crack to make internal stress by hydration heat. For control of crack, admixture was use to change cement because hydration heat was effect to cement. High strength mass concrete had much hydration heat with high volume of cement. It was necessary to reduce hydration heat in construction method. In this study, it evaluates hydration heat, compressive strength of transfer concrete girder regard to field construction type such as separation, whole etc. Also, we test compressive strength of concrete with core and mold specimen.

  • PDF

초고성능 콘크리트의 수화모델에 대한 연구 (Analysis of hydration of ultra high performance concrete)

  • 왕하이롱;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구 (An experimental Study on the Strength Control of High Fluidity Concrete by Maturity)

  • 김무한;남재현;김규용;길배수;한장현
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

Thermal cracking analysis of concrete with cement hydration model and equivalent age method

  • Tian, Ye;Jin, Xianyu;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.271-289
    • /
    • 2013
  • In this research, a developed microstructural model of cement particles was presented to describe the cement hydration procedure. To simplify the hydration process, the whole hydration was analyzed in a series of sub-steps. In each step, the hydration degree, as well as the microstructural size of the hydration cell, was calculated as a function of the radius of the unreacted cement particles. With the consideration of the water consumption and the reduction of the interfacial area between water and hydration products, the micro-level expressions of the cement hydration kinetics were established. Then the heat released and temperature history of the concrete was carried out with the hydration degree obtained from each sub-steps. The equivalent age method based on the Arrhenius law was introduced in this research. Based on the equivalent age method, a maturity model was applied to describe the evolution of the mechanical properties of the material during the hydration process. The finite element program ANSYS was used to analyze the temperature field in concrete structures. Then thermal stress field was calculated using the elasticity modulus obtained from code formulate. And the risk of thermal cracking was estimated by the comparison of thermal stress and concrete tensile strength.

초지연제를 이용한 매스콘크리트의 수화열 조정에 관한 연구 (A Study on the Control of Hydration Heat of Mass Concrete Using Super Retarding Agent)

  • 유동수;심보길;윤치환;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 2001
  • Mass concrete is placed considering placing lifts in order to reduce thermal cracks by hydration heat. But they results in cold joint between placing lifts, which bring about the loss of strength, water tightness and undesirable appearance. Therefore, in this paper, mechanical and hydration heat of mass concrete using super retarding agent developed through previous study are investigated in order to reduce the hydration heat and place it without place lift. According to test results, placing lifts combined with normal concrete and concrete containing super retarding agent have positive effects on reducing hydration heat. Especially, the crack index by thermal stress of the concrete containing super retarding agent less than a quarter, compared to that of plain concrete without placing lifts, and less than a half, compared to that of plain concrete with placing lifts.

  • PDF

전이보 매스콘크리트의 수화열저감을 위한 초지연제 응결시간차 공법의 적용가능성에 대한 검토 (Investigation on the Applicability for Method of Setting Time Difference by Super Retarding Agent for Reducing Hydration Heat of Transfer Girder Mass Concrete)

  • 윤섭;황인성;백병훈;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.128-131
    • /
    • 2004
  • This paper is to investigate the mock up test results of mass concrete for transfer girder using setting time difference with super retarding agent(SRA) to reduce hydration heat. According to test results, the temperature history of plain concrete without placing lift had a steep rising curvature, and plain concrete had a big temperature difference between surface and middle section of mass concrete, which may result in occurrence of temperature crack. However, considering placing method B, because setting time of middle section concrete was retarded with an increase in SRA contents, higher hydration heat temperature was observed at surface section concrete compared with that at middle section concrete at early age, which can lower the possibility of hydration heat crack. In case of placing method C, although peak temperature of hydration heat was much lower, at early age, high crack occurrence possibility of the hydration heat attributable to the big temperature difference between middle section and bottom section of concrete was expected at bottom section concrete. Therefore, the structure above the ground like transfer girder is not applicable to consider the placing method C.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

초지연제를 이용한 매스콘크리트의 수화열 조정에 관한 연구 (A Study on the Control of Hydration Heat of Mass Control Using Super Retarding Agent)

  • 유동수;심보길;윤치환;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.469-474
    • /
    • 2001
  • Mass concrete is placed considering placing lifts in order to reduce thermal cracks by hydration heat. But they results in cold joint between placing lifts, which bring about the loss of strength, water tightness and undesirable appearance. Therefore, in this paper, mechanical and hydration heat of mass concrete using super retarding agent developed through previous study are investigated in order to reduce the hydration heat and place it without place lift. According to test results, placing lifts combined with normal concrete and concrete containing super retarding agent have positive effects on reducing hydration heat. Especially, the crack index by thermal stress of the concrete containing super retarding agent less than a quarter, compared to that of plain concrete without placing lifts, and less than a half, compared to that of plain concrete with placing lifts.

  • PDF

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.