• 제목/요약/키워드: Concrete Filled Tube

검색결과 496건 처리시간 0.025초

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.

콘크리트 충진 유리섬유 복합소재 튜브 합성압축부재의 구조적 특성분석 (Structural Characteristics of Concrete Filled Glass Fiber Reinforced Composite Tube)

  • 이성우;박신전;최석환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.571-574
    • /
    • 1999
  • Due to many advantages of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member si studied. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface. Thus it can be anticipated that increased strength of concrete will be incorporated in the design of composite compression member.

  • PDF

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Concrete filled double skin tubular members subjected to bending

  • Uenaka, Kojiro;Kitoh, Hiroaki;Sonoda, Keiichiro
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.297-312
    • /
    • 2008
  • A concrete filled double skin tubular (called CFDST in abbreviation) member consists of two concentric circular steel tubes and filled concrete between them. Purpose of this study is to investigate their bending characteristics experimentally. The two test parameters of the tubes considered were an inner-to-outer diameter ratio and a thickness-diameter ratio. As a result, their observed failure modes were controlled by tensile cracking or local buckling of the outer tube. Discussion is focused on the confinement effect on the filled concrete due to the both tubes and also the influence of the inner-to-outer diameter ratios on their deformability and load carrying capacity.

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

콘크리트 충전 각형강관 기둥재의 최대내력 (The Beam-Column Strength of Concrete Filled Tubes)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.391-400
    • /
    • 1997
  • 본 연구의 목적은 콘크리트충전 각형강관 기둥의 최대내력을 산정할 수 있는 내력식을 제안하는데 있다. 내력식을 제안하기 위해서 수치해석과 실험을 통해 최대내력를 정량적으로 평가하고 기존의 한계상태설계법의 규준식에 근거하여 적절한 보정방안을 제안하여 콘크리트 충전 각형강관 기둥의 최대내력을 산정할 수 있는 내력식을 제안하고자 한다.

  • PDF

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측 (A Evaluation on the Field Application of High Strength Concrete for CFT Column)

  • 박제영;정경수;김우재;이종인;김용민
    • 콘크리트학회논문집
    • /
    • 제26권6호
    • /
    • pp.707-714
    • /
    • 2014
  • 콘크리트 충전강관(CFT)은 강관의 내부에 콘크리트로 채워진 기둥이다. CFT는 강재와 콘크리트로 구성되며, 강재는 콘크리트를 내부에서 구속시켰고, 내부 콘크리트는 기둥의 압축하중을 감당한다. 본 실험에서 73~100MPa급 고강도 콘크리트에 관해 유동성실험, 압축강도실험, 압송압력실험을 실시하였으며, CFT용 고강도 콘크리트의 물리적 성질을 알아보기 위해 슬럼프, 슬럼프 플로우, 공기량, U-box시험, O-Lot시험, L-flow시험이 진행되었다. 이러한 연구의 결과를 바탕으로 Mock-up테스트에서 콘크리트 충전성 시험, 수화열 측정 시험, 응력계측 시험을 수행하였다. 현장적용은 상암동 및 서강대 현장의 두 곳에 각각 ${\Box}-566{\times}566{\times}10$, ${\Box}-400{\times}400{\times}25$의 대상기둥을 선정하여 현장계측을 진행하였다. CFT기둥의 장기거동 예측에 관하여 설계하중에 대해 콘크리트의 탄성변형과 건조수축, 크리프 수축을 고려한 ACI 209 재료모델을 사용한 결과는 계측결과와 거의 일치하였다.