• Title/Summary/Keyword: Concrete Filled Tube(CFT)

Search Result 218, Processing Time 0.022 seconds

Numerical Model for the Estimation of Ultimate Load Capacity of CFT Columns Considering Time-dependent Behavior (시간 의존적 거동을 고려한 CFT 기둥의 극한 하중 계산을 위한 수치 해석 모델 제안)

  • Seong Hun Kim;Hyo-Gyoung Kwak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • This paper introduces a numerical analysis model capable of evaluating CFT (Concrete-Filled Tube) columns across all time stages, incorporating creep behavior analysis and inelastic analysis to account for time-dependent behavior. The proposed model is compared with experimental results, revealing that the numerical model presented in this paper demonstrates more accurate trends than existing design criteria. Following verification, a numerical analysis is conducted for each slenderness ratio, determining the ultimate load capacity and examining the short-term and long-term sustained load behavior of the overall CFT column members.

A Study on the Strength and Stiffness of the Concrete Filled Circular Tube Beam to Column Connections under the Gravity Loads (연직하중을 받는 콘크리트충전 원형강관기둥의 접합부 내력에 관한 연구)

  • Lee, Myung Woo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.611-623
    • /
    • 1997
  • This paper provides the results of an experimental and analytical study performed on the beam to Concrete Filled Circular Steel Column connections with the external stiffener rings under the gravity loads. Specimens are modeled as a 1/4 scale of the beam-columns as gravity loads are applied to a multi-story frame. Important parameters in this study are the width of the external rings, the diameter-thickness ratios of column and whether or not the external rings are welded to the circular column. A total of 20 specimens are tested to clarify the structural behavior of the CFT column connections with the external stiffener rings. The test results are summarized for the yield and maximum strength and stiffness. The existing design equations for the allowable and yield load capacities are referred to verify the structural characteristics for the connections.

  • PDF

The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns (편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성)

  • Choi, Jin-Woo;Seo, Su-Hong;Park, Joon-Soek;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate (강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정)

  • Kim, Sungwon;Hong, Hyemin;Han, Taek Hee;Seo, Seung Nam
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

A Nonlinear FEM Analysis of Connections Between Concrete Filled Steel Tube Columns and H-Beams (콘크리트충전(充塡) 각형강관(角形鋼管) 기둥과 H형강 보 접합부(接合部)의 비선형 유한요소해석)

  • Yun, Hyun-Do;Kim, Ok-Ryong;Kim, Ok-Ryong;Lee, Hun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • The analytical studies included nonlinear finite element analysis of split-tee connection details subjected to axial load and lateral load. A three-dimensional model of the connections between CFT columns and H-beams has been developed. Both initial geometrical imperfections and residual stresses are taken into consideration. A geometrically nonlinear load-displacement analysis of the structure containing the imperfection is then performed, using the Riks method. Analytical results are compared with existing experimental results. Extensive parametric analyses are carried out to investigate the relation of the connections between CFT columns and H-beam to various parameters such as the axial load, column width-thickness ratio, and split-tee thickness.

A Study on Behavioral Characteristics of Inner Reinforced CFT Column-to-Foundation Connections (내부보강형 CFT 기둥 기초 연결부의 거동특성에 대한 연구)

  • Kim, Hee-Ju;Ham, Jun-Su;Chung, Jin-Il;Hwang, Won-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.36-43
    • /
    • 2014
  • In this study, circular sectional concrete-filled tube(CFT) column-to-foundation connections were numerically investigated in order to improve their structural details. A inner reinforced specimen with high-tension bolts and inner deformed bars was adopted from a previous experimental study to make the numerical model. The validity of the numerical method was verified through comparing the experimental results with the analysis's ones. In order to optimize design variables about the inner reinforced model, a number of numerical analyses were conducted for various variables. Finally, this study suggested the optimum variables about the reinforced circular sectional CFT column-to-foundation connections.

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm

  • Choi, Sung-Mo;Jung, Do-Sub;Kim, Dae-Joong;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.303-320
    • /
    • 2007
  • The objective of this study is to clarify the structural features of members consisting of connection, as a series of the previous study on the CFT column-to-beam tensile connection with combined cross diaphragm. This connection has the merits that the stress is distributed evenly on the beam flange and the diaphragm and the stress concentration is reduced, by improving the stress transfer route and restraining abrupt deformation of diaphragm. The finite element analysis was performed to find out the stress transfer through sleeve which is an important member of the connection with combined cross diaphragm. The length and thickness of sleeve were used as variables for the analysis. As the analysis results, the length and thickness of sleeve didn't influence on the capacity of the connection and played a role of a medium to transfer the stress from the diaphragm to the filled concrete. It is proposed that the appropriate length of sleeve be the same value as the diameter of sleeve and the appropriate ratio of sleeve diameter to sleeve thickness be 20. Two equations for evaluation of the load-carrying capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.